Advances in Shipping Data Analysis and Modeling. Tracking and Mapping Maritime Flows in the Age of Big Data

跟踪(教育) 计算机科学 大数据 数据科学 地理 地图学 数据挖掘 社会学 教育学
作者
César Ducruet
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot 被引量:1
摘要

Shipping flows – maritime ‘footprints’ – remain underexplored in the existing literature despite the crucial importance of freight transport for global trade and economic development. Additionally, decision-makers lack a comprehensive view on how shipping flows can be measured, analyzed, and mapped in order to support their policies and strategies. This interdisciplinary volume, drawing on an international cast-list of experts, explores a number of crucial issues in shipping data estimation, construction, collection, mining, analysis, visualization, and mapping. Advances in Shipping Data Analysis and Modeling delivers several key messages. First, that in a world of just-in-time delivery and rapid freight transit, it is important to bear in mind the long-term roots of current trends as well as foreseeable future developments because shipping patterns exhibit recurrent, if not cyclical and path-dependent, dynamics. Second, shipping flows are currently often understood at the micro-level of intra-urban logistics delivery and at the national level using commodity flow analyses, but this volume emphasizes the need to expand the scale of analysis by offering new evidence on the changing distribution of global and international shipping flows, based on actual data. Third, that this multidisciplinary approach to shipping flows can shed important light on crucial issues that go beyond shipping itself including climate change, urban development, technological change, commodity specialization, digital humanities, navigation patterns, international trade, and regional growth. Edited by experts in their field, this volume is of upmost importance to those who study industrial economics, shipping industries and economic and transport geography.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凉白开发布了新的文献求助10
1秒前
重要的金毛关注了科研通微信公众号
3秒前
3秒前
上官若男应助彭苗苗采纳,获得10
4秒前
JamesPei应助11采纳,获得10
4秒前
5秒前
mia完成签到,获得积分10
6秒前
凉白开完成签到,获得积分10
7秒前
Puokn完成签到,获得积分10
8秒前
mei的科研小院子完成签到,获得积分10
9秒前
lbgbox发布了新的文献求助10
9秒前
斗鱼飞鸟和俞完成签到,获得积分10
10秒前
不配.应助严昌采纳,获得10
12秒前
15秒前
靓丽的发箍完成签到,获得积分10
16秒前
16秒前
不配.应助NZH采纳,获得20
16秒前
桔梗花开发布了新的文献求助30
17秒前
17秒前
爱撒娇的鱼应助qrj采纳,获得10
17秒前
传奇3应助爱喝水采纳,获得30
18秒前
20秒前
21秒前
彭苗苗发布了新的文献求助10
22秒前
N7发布了新的文献求助10
23秒前
25秒前
26秒前
小jiojio的猪完成签到,获得积分10
27秒前
28秒前
ssx关注了科研通微信公众号
29秒前
李健应助小羊转圈圈采纳,获得10
31秒前
ll完成签到,获得积分10
31秒前
32秒前
32秒前
Orange应助mm采纳,获得10
34秒前
35秒前
chen发布了新的文献求助10
35秒前
35秒前
Nnn完成签到,获得积分10
36秒前
CHSLN完成签到 ,获得积分10
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789630
关于积分的说明 7791721
捐赠科研通 2445972
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079