Highlighting discrepancies in walking prediction accuracy for patients with traumatic spinal cord injury: an evaluation of validated prediction models using a Canadian Multicenter Spinal Cord Injury Registry

医学 置信区间 接收机工作特性 逻辑回归 脊髓损伤 回廊的 队列 前瞻性队列研究 功能独立性测度 物理疗法 曲线下面积 内科学 脊髓 康复 精神科
作者
Philippe Phan,Jason Weatherald,Qiong Zhang,Carly S. Rivers,Vanessa K. Noonan,Tova Plashkes,Eugene K. Wai,Jérôme Paquet,Darren M. Roffey,Eve C. Tsai,Nader Fallah
出处
期刊:The Spine Journal [Elsevier]
卷期号:19 (4): 703-710 被引量:27
标识
DOI:10.1016/j.spinee.2018.08.016
摘要

Abstract

BACKGROUND CONTEXT

Models for predicting recovery in traumatic spinal cord injury (tSCI) patients have been developed to optimize care. Several models predicting tSCI recovery have been previously validated, yet recent findings question their accuracy, particularly in patients whose prognoses are the least predictable.

PURPOSE

To compare independent ambulatory outcomes in AIS (ASIA [American Spinal Injury Association] Impairment Scale) A, B, C, and D patients, as well as in AIS B+C and AIS A+D patients by applying two existing logistic regression prediction models.

STUDY DESIGN

A prospective cohort study.

PARTICIPANT SAMPLE

Individuals with tSCI enrolled in the pan-Canadian Rick Hansen SCI Registry (RHSCIR) between 2004 and 2016 with complete neurologic examination and Functional Independence Measure (FIM) outcome data.

OUTCOME MEASURES

The FIM locomotor score was used to assess independent walking ability at 1-year follow-up.

METHODS

Two validated prediction models were evaluated for their ability to predict walking 1-year postinjury. Relative prognostic performance was compared with the area under the receiver operating curve (AUC).

RESULTS

In total, 675 tSCI patients were identified for analysis. In model 1, predictive accuracies for 675 AIS A, B, C, and D patients as measured by AUC were 0.730 (95% confidence interval [CI] 0.622–0.838), 0.691 (0.533–0.849), 0.850 (0.771–0.928), and 0.516 (0.320–0.711), respectively. In 160 AIS B+C patients, model 1 generated an AUC of 0.833 (95% CI 0.771–0.895), whereas model 2 generated an AUC of 0.821 (95% CI 0.754–0.887). The AUC for 515 AIS A+D patients was 0.954 (95% CI 0.933–0.975) with model 1 and 0.950 (0.928–0.971) with model 2. The difference in prediction accuracy between the AIS B+C cohort and the AIS A+D cohort was statistically significant using both models (p=.00034; p=.00038). The models were not statistically different in individual or subgroup analyses.

CONCLUSIONS

Previously tested prediction models demonstrated a lower predictive accuracy for AIS B+C than AIS A+D patients. These models were unable to effectively prognosticate AIS A+D patients separately; a failure that was masked when amalgamating the two patient populations. This suggests that former prediction models achieved strong prognostic accuracy by combining AIS classifications coupled with a disproportionately high proportion of AIS A+D patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
L353052833发布了新的文献求助10
1秒前
1秒前
Dante完成签到,获得积分10
2秒前
HB完成签到,获得积分10
2秒前
671发布了新的文献求助10
3秒前
3秒前
文艺的平松完成签到,获得积分10
4秒前
今后应助亿万男人的初恋采纳,获得30
4秒前
莫言发布了新的文献求助30
4秒前
内向诗云完成签到,获得积分10
6秒前
高文强完成签到,获得积分10
7秒前
精明晓刚发布了新的文献求助10
7秒前
7秒前
喂喂发布了新的文献求助10
7秒前
眯眯眼的沧海完成签到,获得积分20
8秒前
8秒前
8秒前
Owen应助傲娇的芝麻采纳,获得10
9秒前
ngldy发布了新的文献求助30
9秒前
Geodada发布了新的文献求助10
9秒前
neurospine完成签到,获得积分10
9秒前
LX完成签到,获得积分20
9秒前
10秒前
oblivious完成签到,获得积分10
10秒前
大个应助edtaa采纳,获得10
10秒前
11秒前
精明晓刚完成签到,获得积分10
11秒前
大聪明发布了新的文献求助10
12秒前
李爱国应助彭川宁采纳,获得10
12秒前
LX发布了新的文献求助10
13秒前
13秒前
敏感的胡萝卜完成签到 ,获得积分10
14秒前
15秒前
lzr发布了新的文献求助10
16秒前
16秒前
风欲风往发布了新的文献求助10
16秒前
YMM完成签到,获得积分10
16秒前
逆行发布了新的文献求助10
16秒前
wxz1998完成签到,获得积分10
17秒前
lin发布了新的文献求助10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143796
求助须知:如何正确求助?哪些是违规求助? 2795335
关于积分的说明 7814709
捐赠科研通 2451390
什么是DOI,文献DOI怎么找? 1304463
科研通“疑难数据库(出版商)”最低求助积分说明 627230
版权声明 601419