Highlighting discrepancies in walking prediction accuracy for patients with traumatic spinal cord injury: an evaluation of validated prediction models using a Canadian Multicenter Spinal Cord Injury Registry

医学 置信区间 接收机工作特性 逻辑回归 脊髓损伤 回廊的 队列 前瞻性队列研究 功能独立性测度 物理疗法 曲线下面积 内科学 脊髓 康复 精神科
作者
Philippe Phan,Jason Weatherald,Qiong Zhang,Carly S. Rivers,Vanessa K. Noonan,Tova Plashkes,Eugene K. Wai,Jérôme Paquet,Darren M. Roffey,Eve C. Tsai,Nader Fallah
出处
期刊:The Spine Journal [Elsevier]
卷期号:19 (4): 703-710 被引量:27
标识
DOI:10.1016/j.spinee.2018.08.016
摘要

Abstract

BACKGROUND CONTEXT

Models for predicting recovery in traumatic spinal cord injury (tSCI) patients have been developed to optimize care. Several models predicting tSCI recovery have been previously validated, yet recent findings question their accuracy, particularly in patients whose prognoses are the least predictable.

PURPOSE

To compare independent ambulatory outcomes in AIS (ASIA [American Spinal Injury Association] Impairment Scale) A, B, C, and D patients, as well as in AIS B+C and AIS A+D patients by applying two existing logistic regression prediction models.

STUDY DESIGN

A prospective cohort study.

PARTICIPANT SAMPLE

Individuals with tSCI enrolled in the pan-Canadian Rick Hansen SCI Registry (RHSCIR) between 2004 and 2016 with complete neurologic examination and Functional Independence Measure (FIM) outcome data.

OUTCOME MEASURES

The FIM locomotor score was used to assess independent walking ability at 1-year follow-up.

METHODS

Two validated prediction models were evaluated for their ability to predict walking 1-year postinjury. Relative prognostic performance was compared with the area under the receiver operating curve (AUC).

RESULTS

In total, 675 tSCI patients were identified for analysis. In model 1, predictive accuracies for 675 AIS A, B, C, and D patients as measured by AUC were 0.730 (95% confidence interval [CI] 0.622–0.838), 0.691 (0.533–0.849), 0.850 (0.771–0.928), and 0.516 (0.320–0.711), respectively. In 160 AIS B+C patients, model 1 generated an AUC of 0.833 (95% CI 0.771–0.895), whereas model 2 generated an AUC of 0.821 (95% CI 0.754–0.887). The AUC for 515 AIS A+D patients was 0.954 (95% CI 0.933–0.975) with model 1 and 0.950 (0.928–0.971) with model 2. The difference in prediction accuracy between the AIS B+C cohort and the AIS A+D cohort was statistically significant using both models (p=.00034; p=.00038). The models were not statistically different in individual or subgroup analyses.

CONCLUSIONS

Previously tested prediction models demonstrated a lower predictive accuracy for AIS B+C than AIS A+D patients. These models were unable to effectively prognosticate AIS A+D patients separately; a failure that was masked when amalgamating the two patient populations. This suggests that former prediction models achieved strong prognostic accuracy by combining AIS classifications coupled with a disproportionately high proportion of AIS A+D patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋佳发布了新的文献求助20
1秒前
1秒前
mimier完成签到 ,获得积分10
1秒前
吃吃完成签到,获得积分10
1秒前
2秒前
2秒前
心动不如行动完成签到,获得积分10
2秒前
我不到啊完成签到,获得积分10
2秒前
4秒前
4秒前
背后尔容发布了新的文献求助10
4秒前
nczpf2010完成签到,获得积分10
4秒前
思源应助exile77采纳,获得10
5秒前
爱上秋风完成签到,获得积分10
5秒前
无花果应助EASA采纳,获得10
6秒前
凡凡发布了新的文献求助10
6秒前
仁爱的帽子完成签到,获得积分10
7秒前
华仔应助沉默的青筠采纳,获得10
7秒前
研友_LwX5Kn完成签到,获得积分10
8秒前
CY发布了新的文献求助30
8秒前
8秒前
akz发布了新的文献求助10
9秒前
zhan发布了新的文献求助10
9秒前
小马甲应助西红柿炒番茄采纳,获得30
9秒前
务实青亦完成签到,获得积分10
10秒前
小台完成签到,获得积分10
11秒前
12发布了新的文献求助10
11秒前
12秒前
清秀小馒头完成签到,获得积分10
12秒前
wxx771510625完成签到 ,获得积分10
13秒前
务实青亦发布了新的文献求助10
13秒前
汉堡包应助高晨焜采纳,获得10
15秒前
77paocai完成签到,获得积分10
15秒前
如常完成签到,获得积分10
15秒前
fine发布了新的文献求助10
16秒前
Lucas应助无辜的丹雪采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
糖糖糖发布了新的文献求助10
17秒前
Li发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515