清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Highlighting discrepancies in walking prediction accuracy for patients with traumatic spinal cord injury: an evaluation of validated prediction models using a Canadian Multicenter Spinal Cord Injury Registry

医学 置信区间 接收机工作特性 逻辑回归 脊髓损伤 回廊的 队列 前瞻性队列研究 功能独立性测度 物理疗法 曲线下面积 内科学 脊髓 康复 精神科
作者
Philippe Phan,Jason Weatherald,Qiong Zhang,Carly S. Rivers,Vanessa K. Noonan,Tova Plashkes,Eugene K. Wai,Jérôme Paquet,Darren M. Roffey,Eve C. Tsai,Nader Fallah
出处
期刊:The Spine Journal [Elsevier]
卷期号:19 (4): 703-710 被引量:27
标识
DOI:10.1016/j.spinee.2018.08.016
摘要

Abstract

BACKGROUND CONTEXT

Models for predicting recovery in traumatic spinal cord injury (tSCI) patients have been developed to optimize care. Several models predicting tSCI recovery have been previously validated, yet recent findings question their accuracy, particularly in patients whose prognoses are the least predictable.

PURPOSE

To compare independent ambulatory outcomes in AIS (ASIA [American Spinal Injury Association] Impairment Scale) A, B, C, and D patients, as well as in AIS B+C and AIS A+D patients by applying two existing logistic regression prediction models.

STUDY DESIGN

A prospective cohort study.

PARTICIPANT SAMPLE

Individuals with tSCI enrolled in the pan-Canadian Rick Hansen SCI Registry (RHSCIR) between 2004 and 2016 with complete neurologic examination and Functional Independence Measure (FIM) outcome data.

OUTCOME MEASURES

The FIM locomotor score was used to assess independent walking ability at 1-year follow-up.

METHODS

Two validated prediction models were evaluated for their ability to predict walking 1-year postinjury. Relative prognostic performance was compared with the area under the receiver operating curve (AUC).

RESULTS

In total, 675 tSCI patients were identified for analysis. In model 1, predictive accuracies for 675 AIS A, B, C, and D patients as measured by AUC were 0.730 (95% confidence interval [CI] 0.622–0.838), 0.691 (0.533–0.849), 0.850 (0.771–0.928), and 0.516 (0.320–0.711), respectively. In 160 AIS B+C patients, model 1 generated an AUC of 0.833 (95% CI 0.771–0.895), whereas model 2 generated an AUC of 0.821 (95% CI 0.754–0.887). The AUC for 515 AIS A+D patients was 0.954 (95% CI 0.933–0.975) with model 1 and 0.950 (0.928–0.971) with model 2. The difference in prediction accuracy between the AIS B+C cohort and the AIS A+D cohort was statistically significant using both models (p=.00034; p=.00038). The models were not statistically different in individual or subgroup analyses.

CONCLUSIONS

Previously tested prediction models demonstrated a lower predictive accuracy for AIS B+C than AIS A+D patients. These models were unable to effectively prognosticate AIS A+D patients separately; a failure that was masked when amalgamating the two patient populations. This suggests that former prediction models achieved strong prognostic accuracy by combining AIS classifications coupled with a disproportionately high proportion of AIS A+D patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今我来思完成签到 ,获得积分10
3秒前
小蘑菇应助neptuniar采纳,获得10
13秒前
甜美的觅荷完成签到,获得积分10
20秒前
尊敬的凌晴完成签到 ,获得积分10
28秒前
38秒前
愤怒的念蕾完成签到,获得积分10
41秒前
cgs完成签到 ,获得积分10
42秒前
自由的雅旋完成签到 ,获得积分10
49秒前
练得身形似鹤形完成签到 ,获得积分10
49秒前
悠树里完成签到,获得积分10
1分钟前
gwbk完成签到,获得积分10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
neptuniar发布了新的文献求助10
1分钟前
雪花完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
keke发布了新的文献求助10
2分钟前
外向白竹完成签到,获得积分20
2分钟前
慕青应助keke采纳,获得10
2分钟前
jlwang完成签到,获得积分10
2分钟前
Bond完成签到 ,获得积分10
2分钟前
红茸茸羊完成签到 ,获得积分10
2分钟前
3分钟前
简单花花完成签到,获得积分10
3分钟前
mojiu发布了新的文献求助30
3分钟前
Tong完成签到,获得积分0
3分钟前
外向白竹发布了新的文献求助10
3分钟前
酷然完成签到,获得积分10
3分钟前
Benhnhk21完成签到,获得积分10
3分钟前
4分钟前
知行者完成签到 ,获得积分10
4分钟前
4分钟前
开心每一天完成签到 ,获得积分10
4分钟前
爆米花应助keke采纳,获得10
5分钟前
5分钟前
AM发布了新的文献求助10
5分钟前
mojiu完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612005
求助须知:如何正确求助?哪些是违规求助? 4696171
关于积分的说明 14890481
捐赠科研通 4730707
什么是DOI,文献DOI怎么找? 2546088
邀请新用户注册赠送积分活动 1510419
关于科研通互助平台的介绍 1473299