The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye signals combining with chemometrics methods

电子鼻 电子舌 人工智能 随机森林 支持向量机 偏最小二乘回归 化学计量学 模式识别(心理学) 计算机科学 回归 机器学习 数学 化学 统计 食品科学 品味
作者
Min Xu,Jun Wang
出处
期刊:2018 Detroit, Michigan July 29 - August 1, 2018 被引量:3
标识
DOI:10.13031/aim.201800610
摘要

Abstract. In this work, electronic nose (E-nose), electronic tongue (E-tongue) and electronic eye (E-eye) were jointly applied as intelligent instruments to acquire aroma, taste and color signals of tea samples. Features were severally extracted from E-nose, E-tongue and E-eye signals and were fused for analysis. The polyphenols, catechins, caffeine and amino acid as quality indices were detected by traditional methods as reference. For qualitative identification, support vector machine (SVM) and random forest (RF) were comparatively employed in modeling severally based on individual and fusion signals. The SVM and RF models based on the fusion signals achieved perfect classification results with the accuracy of 100%. For quantitative prediction of tea quality indices, partial least squares regression (PLSR), SVM and RF were applied based on individual and fusion signals to establish regression models between electronic signals and the amount of polyphenols, catechins, caffeine and amino acid. The RF prediction models reached higher correlation coefficients (R2) and lower root mean square errors (RMSE) than the PLSR and SVM models did. Meanwhile, the fusion signals had a better performance than the individual signals in PLSR, SVM and RF regression models. This work indicated that the simultaneous utilization of E-nose, E-tongue and E-eye based on appropriate chemometrics method could be successfully applied for qualitative and quantitative analysis of tea quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助zzy采纳,获得10
1秒前
3秒前
haowu发布了新的文献求助10
4秒前
蓝莓发布了新的文献求助10
6秒前
刘丽梅完成签到 ,获得积分10
6秒前
大个应助懦弱的难敌采纳,获得10
6秒前
与树常青发布了新的文献求助10
9秒前
10秒前
yue完成签到 ,获得积分10
10秒前
11秒前
科研通AI2S应助漂亮的念双采纳,获得10
12秒前
skbkbe发布了新的文献求助10
13秒前
13秒前
打打应助顺心灵寒采纳,获得10
14秒前
Gergeo应助危机的河马采纳,获得20
14秒前
15秒前
海潮发布了新的文献求助10
16秒前
郑志凡完成签到 ,获得积分10
16秒前
19秒前
FashionBoy应助射天狼采纳,获得10
20秒前
登山人发布了新的文献求助10
20秒前
无限毛豆发布了新的文献求助10
21秒前
宜醉宜游宜睡应助王算法采纳,获得10
22秒前
皮本皮发布了新的文献求助10
23秒前
punchline完成签到 ,获得积分10
24秒前
搜集达人应助张怀民采纳,获得10
25秒前
顺心灵寒发布了新的文献求助10
25秒前
科研通AI2S应助学呀学采纳,获得10
25秒前
研友_851KE8发布了新的文献求助10
28秒前
28秒前
科研通AI2S应助自信寒蕾采纳,获得10
28秒前
威武鞅完成签到,获得积分10
30秒前
szk完成签到,获得积分10
31秒前
Jasper应助CY88采纳,获得10
33秒前
射天狼发布了新的文献求助10
33秒前
封迎松发布了新的文献求助200
33秒前
33秒前
会飞的鲸鱼完成签到 ,获得积分10
34秒前
666完成签到 ,获得积分10
36秒前
wshiyu完成签到 ,获得积分10
36秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157464
求助须知:如何正确求助?哪些是违规求助? 2808880
关于积分的说明 7878772
捐赠科研通 2467260
什么是DOI,文献DOI怎么找? 1313299
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919