Construction of a NT-3 sustained-release system cross-linked with an acellular spinal cord scaffold and its effects on differentiation of cultured bone marrow mesenchymal stem cells
This study sought to promote the adhesion, proliferation and differentiation of rat bone marrow mesenchymal stem cells by constructing a neurotrophin-3 (NT-3) sustained-release system cross-linked with an acellular spinal cord scaffold. 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) chemistry combined with chemical extraction was used to construct an acellular spinal cord scaffold. The decellularization completion was validated. An EDC cross-linking method was used to construct the NT-3 cross-linked acellular spinal scaffold. ELISA was used to verify sustained release of NT-3; the dorsal root ganglion method was used to verify the biological activity of the sustained-release NT-3. DAPI staining was used to confirm the adhesion of the cultured rat bone marrow mesenchymal stem cells (P3) to the NT-3 scaffold, and cell counting kit-8 (CCK-8) analysis was used to verify the cellular proliferation after 24 h and 48 h of culture. Immunohistochemistry was used to confirm the differentiation of the bone marrow cells into neuron-like cells. An NT-3 sustained-release system cross-linked to an acellular spinal cord scaffold was successfully constructed. Sustained-release NT-3 could persist for 35 days and had biological activity for at least 21 days. It could promote the adhesion, proliferation and differentiation of rat bone marrow mesenchymal stem cells. As a composite scaffold, an NT-3 sustained-release system cross-linked with an acellular spinal cord scaffold has potential applications for tissue engineering.