Promoting Fe3+/Fe2+ cycling under visible light by synergistic interactions between P25 and small amount of Fenton reagents

化学 双酚A 试剂 可见光谱 分解 矿化(土壤科学) 吸附 动力学 光化学 降级(电信) X射线光电子能谱 化学工程 有机化学 材料科学 电信 物理 光电子学 量子力学 计算机科学 氮气 环氧树脂 工程类
作者
Lijie Xu,Liang Meng,Xiaoxiao Zhang,Mei Xiang,Xuewen Guo,Wei Li,Ping Wang,Lu Gan
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:379: 120795-120795 被引量:58
标识
DOI:10.1016/j.jhazmat.2019.120795
摘要

Merits of adding P25 to homogeneous photo-Fenton-like process (ph-F) were evaluated under visible light using Bisphenol A (BPA) as a model pollutant. Interactions between P25 and Fe3+/H2O2 were emphasized. Results show that adsorption of Fe(III) on P25 produced redshift of light absorption, and interactions between P25 and H2O2 promoted photoelectron generation, effectively introducing visible light into ph-F. The visible-light-driven ph-F demonstrated adequate performance at high Fe3+/H2O2 dosage, while P25 addition showed significant acceleration of BPA degradation with saving amount of Fe3+/H2O2. The mechanism was confirmed to be enhanced Fe3+/Fe2+ cycling by photo-electrons, particularly pronounced at low [Fe(III)]. Additionally, H2O2 was utilized more efficiently in P25-ph-F than that in ph-F by diminishing the radical scavenging role of H2O2 at lower [Fe(III)]. Kinetics and ESR analysis supported this mechanism. Compared to ph-F, the P25-ph-F process also demonstrated stronger potentials in degrading BPA at high concentrations and better mineralization capability with reduced Fe3+/H2O2 reagents. The sustainability of P25-ph-F was also examined in regard to its advantage under sunlight and the strong recyclable and reusable capability. BPA decomposition was dominated by •OH attack at both the aromatic ring and the connecting carbon, and P25-ph-F was more competent in transforming the primary intermediates than ph-F.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福果汁完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
mc发布了新的文献求助10
1秒前
1秒前
meng完成签到,获得积分10
2秒前
2秒前
科研通AI5应助kk采纳,获得10
2秒前
qing发布了新的文献求助10
2秒前
所所应助韦威风采纳,获得10
3秒前
3秒前
大七发布了新的文献求助10
3秒前
勤奋白昼完成签到,获得积分10
3秒前
通~发布了新的文献求助10
4秒前
眼角流星完成签到,获得积分10
4秒前
bxj发布了新的文献求助10
4秒前
joker完成签到 ,获得积分10
5秒前
靓丽访枫发布了新的文献求助10
5秒前
乔乔发布了新的文献求助10
5秒前
科研通AI5应助深情凡灵采纳,获得10
7秒前
remedy完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
eric曾发布了新的文献求助10
9秒前
9秒前
嘻嘻嘻完成签到,获得积分10
10秒前
10秒前
carrier_hc完成签到,获得积分10
10秒前
冰安发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
13秒前
在水一方应助桑桑采纳,获得10
14秒前
14秒前
充电宝应助通~采纳,获得10
15秒前
liberation完成签到 ,获得积分10
15秒前
牛牛123完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762