随机共振
赫斯特指数
分数布朗运动
统计物理学
高斯噪声
阈下传导
噪音(视频)
二进制数
物理
去趋势波动分析
信号(编程语言)
非线性系统
高斯分布
解码方法
布朗噪声
指数
随机过程
相互信息
布朗运动
数学
算法
计算机科学
白噪声
统计
量子力学
缩放比例
人工智能
哲学
晶体管
电压
图像(数学)
语言学
算术
几何学
程序设计语言
作者
Fengyin Gao,Yanmei Kang,Xi Chen,Guanrong Chen
出处
期刊:Physical review
日期:2018-05-29
卷期号:97 (5)
被引量:9
标识
DOI:10.1103/physreve.97.052142
摘要
This paper reveals the effect of fractional Gaussian noise with Hurst exponent H∈(1/2,1) on the information capacity of a general nonlinear neuron model with binary signal input. The fGn and its corresponding fractional Brownian motion exhibit long-range, strong-dependent increments. It extends standard Brownian motion to many types of fractional processes found in nature, such as the synaptic noise. In the paper, for the subthreshold binary signal, sufficient conditions are given based on the "forbidden interval" theorem to guarantee the occurrence of stochastic resonance, while for the suprathreshold binary signal, the simulated results show that additive fGn with Hurst exponent H∈(1/2,1) could increase the mutual information or bits count. The investigation indicated that the synaptic noise with the characters of long-range dependence and self-similarity might be the driving factor for the efficient encoding and decoding of the nervous system.
科研通智能强力驱动
Strongly Powered by AbleSci AI