A Duplication Analysis-Based Evolutionary Algorithm for Biobjective Feature Selection

特征选择 进化算法 计算机科学 人口 特征(语言学) 维数之咒 选择(遗传算法) 人工智能 模式识别(心理学) 数据挖掘 数学优化 机器学习 数学 哲学 社会学 人口学 语言学
作者
Hang Xu,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:25 (2): 205-218 被引量:90
标识
DOI:10.1109/tevc.2020.3016049
摘要

Feature selection is a complex optimization problem with important real-world applications. Normally, its main target is to reduce the dimensionality of the dataset and increase the effectiveness of the classification. Owing to the population-inspired characteristics, different evolutionary algorithms (EAs) have been proposed to solve feature selection problems over the past decades. However, the majority of them only consider single-objective optimization while many real-world problems have multiple objectives, which creates a genuine demand for designing more suitable and effective EAs to handle multiobjective feature selection. A multiobjective feature selection problem usually consists of two objectives: one is to minimize the number of selected features and the other is to minimize the error of classification. In this article, we propose a duplication analysis-based EA (DAEA) for biobjective feature selection in classification. In the proposed algorithm, we make improvements on the basic dominance-based EA framework in three aspects: first, the reproduction process is modified to improve the quality of offspring; second, a duplication analysis method is proposed to filter out the redundant solutions; and third, a diversity-based selection method is adopted to further select the reserved solutions. In the experiments, we have compared the proposed algorithm with five state-of-the-art multiobjective EAs (MOEAs) and tested them on 20 classification datasets, using two widely used performance metrics. According to the empirical results, DAEA performs the best on most datasets, indicating that DAEA not only gains outstanding optimization performance but also obtains good classification and generalization results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安谢完成签到,获得积分10
1秒前
852应助小张采纳,获得10
2秒前
活泼的飞双完成签到,获得积分10
3秒前
热情的板栗完成签到,获得积分10
3秒前
4秒前
Loooong应助汤姆采纳,获得10
4秒前
淡定雁开发布了新的文献求助10
4秒前
tianny发布了新的文献求助10
4秒前
111111111发布了新的文献求助10
5秒前
Mian发布了新的文献求助10
5秒前
5秒前
xiuwen完成签到,获得积分10
6秒前
TOMORI酱完成签到,获得积分10
9秒前
justin发布了新的文献求助10
9秒前
皮卡丘完成签到 ,获得积分10
10秒前
10秒前
TT发布了新的文献求助10
11秒前
夜空的光芒完成签到 ,获得积分10
12秒前
12秒前
乐一李完成签到,获得积分10
12秒前
会神完成签到,获得积分20
13秒前
天天快乐应助远方采纳,获得10
15秒前
烟花应助liuq采纳,获得10
15秒前
lixl0725完成签到 ,获得积分10
16秒前
专注秋尽发布了新的文献求助10
16秒前
科研小民工应助研友_LMg7PZ采纳,获得30
17秒前
宸哥完成签到,获得积分10
17秒前
眯眯眼的衬衫应助yanyan采纳,获得10
19秒前
Yue完成签到 ,获得积分10
19秒前
无限的含羞草完成签到,获得积分10
20秒前
大个应助WZ0904采纳,获得10
21秒前
Sofia发布了新的文献求助60
24秒前
25秒前
橘子姐姐发布了新的文献求助10
26秒前
yanyan完成签到,获得积分10
27秒前
TT完成签到,获得积分10
28秒前
28秒前
了然完成签到 ,获得积分10
29秒前
jxp完成签到,获得积分10
29秒前
jojo完成签到 ,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808