A Duplication Analysis-Based Evolutionary Algorithm for Biobjective Feature Selection

特征选择 进化算法 计算机科学 人口 特征(语言学) 维数之咒 选择(遗传算法) 人工智能 模式识别(心理学) 数据挖掘 数学优化 机器学习 数学 哲学 社会学 人口学 语言学
作者
Hang Xu,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:25 (2): 205-218 被引量:90
标识
DOI:10.1109/tevc.2020.3016049
摘要

Feature selection is a complex optimization problem with important real-world applications. Normally, its main target is to reduce the dimensionality of the dataset and increase the effectiveness of the classification. Owing to the population-inspired characteristics, different evolutionary algorithms (EAs) have been proposed to solve feature selection problems over the past decades. However, the majority of them only consider single-objective optimization while many real-world problems have multiple objectives, which creates a genuine demand for designing more suitable and effective EAs to handle multiobjective feature selection. A multiobjective feature selection problem usually consists of two objectives: one is to minimize the number of selected features and the other is to minimize the error of classification. In this article, we propose a duplication analysis-based EA (DAEA) for biobjective feature selection in classification. In the proposed algorithm, we make improvements on the basic dominance-based EA framework in three aspects: first, the reproduction process is modified to improve the quality of offspring; second, a duplication analysis method is proposed to filter out the redundant solutions; and third, a diversity-based selection method is adopted to further select the reserved solutions. In the experiments, we have compared the proposed algorithm with five state-of-the-art multiobjective EAs (MOEAs) and tested them on 20 classification datasets, using two widely used performance metrics. According to the empirical results, DAEA performs the best on most datasets, indicating that DAEA not only gains outstanding optimization performance but also obtains good classification and generalization results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kilig完成签到 ,获得积分10
1秒前
喜洋洋发布了新的文献求助10
1秒前
英姑应助HYI采纳,获得10
2秒前
天天快乐应助小詹采纳,获得10
2秒前
fff完成签到,获得积分10
2秒前
怡心亭完成签到 ,获得积分10
3秒前
tan123发布了新的文献求助10
3秒前
Ashore完成签到,获得积分10
4秒前
传统的斓完成签到,获得积分10
5秒前
wanci应助猪猪采纳,获得10
6秒前
殷勤的咖啡完成签到,获得积分10
7秒前
8秒前
火翟丰丰山心完成签到 ,获得积分10
10秒前
Orange应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
852应助冷傲的白卉采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得30
11秒前
orixero应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得30
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
兀兀应助科研通管家采纳,获得10
12秒前
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
12秒前
Ava应助科研通管家采纳,获得10
12秒前
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
Akim应助天边一阵风采纳,获得10
13秒前
13秒前
单薄飞荷完成签到,获得积分10
13秒前
zzzyyyuuu完成签到 ,获得积分10
14秒前
高分求助中
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3288834
求助须知:如何正确求助?哪些是违规求助? 2926086
关于积分的说明 8425326
捐赠科研通 2597126
什么是DOI,文献DOI怎么找? 1417020
科研通“疑难数据库(出版商)”最低求助积分说明 659556
邀请新用户注册赠送积分活动 642000