Low-Rank Tensor Regularized Fuzzy Clustering for Multiview Data

聚类分析 模糊聚类 数学 人工智能 欧几里德距离 模式识别(心理学) 相关聚类 数据挖掘 计算机科学
作者
Huiqin Wei,Long Chen,Keyu Ruan,Lingxi Li,Long Chen
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:28 (12): 3087-3099 被引量:22
标识
DOI:10.1109/tfuzz.2020.2988841
摘要

Since data are collected from a range of sources via different techniques, multiview clustering has become an emerging technique for unsupervised data classification. However, most existing soft multiview clustering methods only consider the pairwise correlations and ignore high-order correlations among multiple views. To integrate more comprehensive information from different views, this article innovates a fuzzy clustering model using the low-rank tensor to address the multiview data clustering problem. Our method first conducts a standard fuzzy clustering on different views of the data separately. Then, the obtained soft partition results are aggregated as the new data to be handled by a Kullback-Leibler (KL) divergence-based fuzzy model with low-rank tensor constraints. The KL divergence function, which replaces the traditional minimized Euclidean distance, can enhance the robustness of the model. More importantly, we formulate fuzzy partition matrices of different views as a third-order tensor. So, a low-rank tensor is introduced as a norm constraint in the KL divergence-based fuzzy clustering to obtain dexterously high-order correlations of different views. The minimization of the final model is convex and we present an efficient augmented Lagrangian alternating direction method to handle this problem. Specially, the global membership is derived by using tensor factorization. The efficiency and superiority of the proposed approach are demonstrated by the comparison with state-of-the-art multiview clustering algorithms on many multiple-view data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
72323完成签到,获得积分10
1秒前
3秒前
淡定的日记本完成签到,获得积分20
3秒前
3秒前
3秒前
飞飞应助姜宇航采纳,获得10
3秒前
zgf完成签到 ,获得积分10
3秒前
淡然柚子发布了新的文献求助10
3秒前
lxm完成签到,获得积分20
4秒前
猪儿虫儿完成签到 ,获得积分10
5秒前
粗心的画板完成签到,获得积分10
6秒前
rebubu发布了新的文献求助10
6秒前
builda完成签到,获得积分20
7秒前
7秒前
7秒前
顺顺尼发布了新的文献求助10
8秒前
8秒前
lxm发布了新的文献求助10
8秒前
8秒前
9秒前
数学真的好难完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
hahahah完成签到,获得积分20
10秒前
栾花花发布了新的文献求助10
10秒前
一只特立独行的朱完成签到,获得积分10
10秒前
12秒前
12秒前
啦啦啦啦发布了新的文献求助10
13秒前
嘉悦发布了新的文献求助30
13秒前
浮游应助积极如天采纳,获得10
13秒前
13秒前
钟钟完成签到,获得积分10
13秒前
筑城院完成签到,获得积分10
13秒前
sapioe关注了科研通微信公众号
15秒前
builda发布了新的文献求助10
15秒前
16秒前
所所应助栾花花采纳,获得10
16秒前
Deannn778发布了新的文献求助10
17秒前
科研通AI6应助西米采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430904
求助须知:如何正确求助?哪些是违规求助? 4543966
关于积分的说明 14190032
捐赠科研通 4462380
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437982
关于科研通互助平台的介绍 1414566