已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Low-Rank Tensor Regularized Fuzzy Clustering for Multiview Data

聚类分析 模糊聚类 数学 人工智能 欧几里德距离 模式识别(心理学) 相关聚类 数据挖掘 计算机科学
作者
Huiqin Wei,Long Chen,Keyu Ruan,Lingxi Li,Long Chen
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:28 (12): 3087-3099 被引量:22
标识
DOI:10.1109/tfuzz.2020.2988841
摘要

Since data are collected from a range of sources via different techniques, multiview clustering has become an emerging technique for unsupervised data classification. However, most existing soft multiview clustering methods only consider the pairwise correlations and ignore high-order correlations among multiple views. To integrate more comprehensive information from different views, this article innovates a fuzzy clustering model using the low-rank tensor to address the multiview data clustering problem. Our method first conducts a standard fuzzy clustering on different views of the data separately. Then, the obtained soft partition results are aggregated as the new data to be handled by a Kullback-Leibler (KL) divergence-based fuzzy model with low-rank tensor constraints. The KL divergence function, which replaces the traditional minimized Euclidean distance, can enhance the robustness of the model. More importantly, we formulate fuzzy partition matrices of different views as a third-order tensor. So, a low-rank tensor is introduced as a norm constraint in the KL divergence-based fuzzy clustering to obtain dexterously high-order correlations of different views. The minimization of the final model is convex and we present an efficient augmented Lagrangian alternating direction method to handle this problem. Specially, the global membership is derived by using tensor factorization. The efficiency and superiority of the proposed approach are demonstrated by the comparison with state-of-the-art multiview clustering algorithms on many multiple-view data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
无语的诗柳完成签到 ,获得积分10
4秒前
4秒前
5秒前
吉他独奏手完成签到,获得积分10
5秒前
小马甲应助zhang采纳,获得10
6秒前
李思雨完成签到 ,获得积分10
6秒前
8秒前
劉浏琉发布了新的文献求助10
8秒前
ding应助夏侯德东采纳,获得10
8秒前
季刘杰完成签到 ,获得积分10
8秒前
春江完成签到,获得积分10
10秒前
疯院士完成签到,获得积分10
10秒前
Orange应助ZA采纳,获得10
10秒前
风中傲柔发布了新的文献求助10
12秒前
元气满满发布了新的文献求助10
12秒前
12秒前
顺利若山完成签到,获得积分10
15秒前
程艳完成签到 ,获得积分10
16秒前
pplynl应助ceeray23采纳,获得200
16秒前
Jeriu完成签到,获得积分10
17秒前
18秒前
shuishui发布了新的文献求助10
22秒前
黄汉良完成签到,获得积分10
22秒前
EMM完成签到 ,获得积分10
23秒前
知足的憨人*-*完成签到,获得积分10
23秒前
领导范儿应助顺利若山采纳,获得10
24秒前
25秒前
领导范儿应助家稚晴采纳,获得10
25秒前
清浅完成签到,获得积分10
27秒前
28秒前
28秒前
夏侯德东发布了新的文献求助10
31秒前
阿怪完成签到,获得积分10
31秒前
无花果应助科研通管家采纳,获得10
32秒前
CipherSage应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
天天快乐应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5172597
求助须知:如何正确求助?哪些是违规求助? 4362775
关于积分的说明 13584396
捐赠科研通 4210832
什么是DOI,文献DOI怎么找? 2309516
邀请新用户注册赠送积分活动 1308631
关于科研通互助平台的介绍 1255818