Low-Rank Tensor Regularized Fuzzy Clustering for Multiview Data

聚类分析 模糊聚类 数学 人工智能 欧几里德距离 模式识别(心理学) 相关聚类 数据挖掘 计算机科学
作者
Huiqin Wei,Long Chen,Keyu Ruan,Lingxi Li,Long Chen
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:28 (12): 3087-3099 被引量:22
标识
DOI:10.1109/tfuzz.2020.2988841
摘要

Since data are collected from a range of sources via different techniques, multiview clustering has become an emerging technique for unsupervised data classification. However, most existing soft multiview clustering methods only consider the pairwise correlations and ignore high-order correlations among multiple views. To integrate more comprehensive information from different views, this article innovates a fuzzy clustering model using the low-rank tensor to address the multiview data clustering problem. Our method first conducts a standard fuzzy clustering on different views of the data separately. Then, the obtained soft partition results are aggregated as the new data to be handled by a Kullback-Leibler (KL) divergence-based fuzzy model with low-rank tensor constraints. The KL divergence function, which replaces the traditional minimized Euclidean distance, can enhance the robustness of the model. More importantly, we formulate fuzzy partition matrices of different views as a third-order tensor. So, a low-rank tensor is introduced as a norm constraint in the KL divergence-based fuzzy clustering to obtain dexterously high-order correlations of different views. The minimization of the final model is convex and we present an efficient augmented Lagrangian alternating direction method to handle this problem. Specially, the global membership is derived by using tensor factorization. The efficiency and superiority of the proposed approach are demonstrated by the comparison with state-of-the-art multiview clustering algorithms on many multiple-view data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助忧心的清炎采纳,获得10
刚刚
慕青应助一个可爱玉采纳,获得10
1秒前
3秒前
充电宝应助Luke采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
7秒前
dala发布了新的文献求助30
8秒前
Go完成签到,获得积分10
9秒前
爆米花应助无心的土豆采纳,获得10
10秒前
10秒前
咖褐完成签到 ,获得积分10
11秒前
zwj完成签到,获得积分20
11秒前
kk发布了新的文献求助10
11秒前
11秒前
在水一方应助繁荣的牛排采纳,获得10
11秒前
fsdghert发布了新的文献求助10
14秒前
16秒前
包容的雁枫完成签到,获得积分10
16秒前
22秒前
23秒前
slin_sjtu完成签到,获得积分10
24秒前
mnc发布了新的文献求助10
26秒前
26秒前
26秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
Orange应助kk采纳,获得10
30秒前
万安安发布了新的文献求助10
31秒前
32秒前
32秒前
活泼听露发布了新的文献求助10
32秒前
34秒前
34秒前
yanlulu完成签到 ,获得积分10
35秒前
36秒前
MA发布了新的文献求助10
36秒前
今天记得来完成签到 ,获得积分10
37秒前
lian发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425319
求助须知:如何正确求助?哪些是违规求助? 4539387
关于积分的说明 14167836
捐赠科研通 4456897
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740