Low-Rank Tensor Regularized Fuzzy Clustering for Multiview Data

聚类分析 模糊聚类 数学 人工智能 欧几里德距离 模式识别(心理学) 相关聚类 数据挖掘 计算机科学
作者
Huiqin Wei,Long Chen,Keyu Ruan,Lingxi Li,Long Chen
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:28 (12): 3087-3099 被引量:22
标识
DOI:10.1109/tfuzz.2020.2988841
摘要

Since data are collected from a range of sources via different techniques, multiview clustering has become an emerging technique for unsupervised data classification. However, most existing soft multiview clustering methods only consider the pairwise correlations and ignore high-order correlations among multiple views. To integrate more comprehensive information from different views, this article innovates a fuzzy clustering model using the low-rank tensor to address the multiview data clustering problem. Our method first conducts a standard fuzzy clustering on different views of the data separately. Then, the obtained soft partition results are aggregated as the new data to be handled by a Kullback-Leibler (KL) divergence-based fuzzy model with low-rank tensor constraints. The KL divergence function, which replaces the traditional minimized Euclidean distance, can enhance the robustness of the model. More importantly, we formulate fuzzy partition matrices of different views as a third-order tensor. So, a low-rank tensor is introduced as a norm constraint in the KL divergence-based fuzzy clustering to obtain dexterously high-order correlations of different views. The minimization of the final model is convex and we present an efficient augmented Lagrangian alternating direction method to handle this problem. Specially, the global membership is derived by using tensor factorization. The efficiency and superiority of the proposed approach are demonstrated by the comparison with state-of-the-art multiview clustering algorithms on many multiple-view data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘿嘿应助走地坤采纳,获得10
刚刚
刚刚
aaabaev应助xiaowei采纳,获得10
1秒前
2秒前
贪玩堡玉完成签到,获得积分10
3秒前
Jasmine发布了新的文献求助10
3秒前
5秒前
细心的飞柏完成签到,获得积分10
5秒前
6秒前
6秒前
芃芃完成签到,获得积分10
6秒前
NexusExplorer应助长情智宸采纳,获得10
7秒前
大海发布了新的文献求助10
7秒前
小张发布了新的文献求助10
7秒前
小张完成签到,获得积分10
8秒前
万能图书馆应助甜甜甜采纳,获得10
8秒前
9秒前
9秒前
yh发布了新的文献求助30
10秒前
炙热灵枫发布了新的文献求助10
11秒前
大力三问发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
12秒前
面包完成签到,获得积分10
13秒前
星辰大海应助神勇书芹采纳,获得10
13秒前
crystaler发布了新的文献求助10
13秒前
hjabao完成签到,获得积分10
13秒前
小鸻完成签到,获得积分10
14秒前
Bob发布了新的文献求助10
14秒前
aldehyde应助燕真采纳,获得10
14秒前
走地坤发布了新的文献求助10
16秒前
16秒前
16秒前
WWW发布了新的文献求助10
17秒前
17秒前
充电宝应助Jasmine采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360565
求助须知:如何正确求助?哪些是违规求助? 4491182
关于积分的说明 13981625
捐赠科研通 4393796
什么是DOI,文献DOI怎么找? 2413638
邀请新用户注册赠送积分活动 1406466
关于科研通互助平台的介绍 1380932