Learning Multimodal Networks From Heterogeneous Data for Prediction of lncRNA–miRNA Interactions

小RNA 计算机科学 计算生物学 人工智能 数据科学 生物 遗传学 基因
作者
Pengwei Hu,Yu‐An Huang,Keith C. C. Chan,Zhu‐Hong You
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (5): 1516-1524 被引量:35
标识
DOI:10.1109/tcbb.2019.2957094
摘要

Long noncoding RNAs (lncRNAs) is an important class of non-protein coding RNAs. They have recently been found to potentially be able to act as a regulatory molecule in some important biological processes. MicroRNAs (miRNAs) have been confirmed to be closely related to the regulation of various human diseases. Recent studies have suggested that lncRNAs could interact with miRNAs to modulate their regulatory roles. Hence, predicting lncRNA–miRNA interactions are biologically significant due to their potential roles in determining the effectiveness of diagnostic biomarkers and therapeutic targets for various human diseases. For the details of the mechanisms to be better understood, it would be useful if some computational approaches are developed to allow for such investigations. As diverse heterogeneous datasets for describing lncRNA and miRNA have been made available, it becomes more feasible for us to develop a model to describe potential interactions between lncRNAs and miRNAs. In this work, we present a novel computational approach called LMNLMI for such purpose. LMNLMI works in several phases. First, it learns patterns from expression, sequences and functional data. Based on the patterns, it then constructs several networks including an expression-similarity network, a functional-similarity network, and a sequence-similarity network. Based on a measure of similarities between these networks, LMNLMI computes an interaction score for each pair of lncRNA and miRNA in the database. The novelty of LMNLMI lies in the use of a network fusion technique to combine the patterns inherent in multiple similarity networks and a matrix completion technique in predicting interaction relationships. Using a set of real data, we show that LMNLMI can be a very effective approach for the accurate prediction of lncRNA-miRNA interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英俊的铭应助小安采纳,获得10
2秒前
3秒前
sun完成签到,获得积分10
3秒前
耍酷的夏云应助勤劳落雁采纳,获得10
5秒前
5秒前
ywang发布了新的文献求助10
5秒前
车秋寒完成签到,获得积分10
5秒前
刘哈哈关注了科研通微信公众号
5秒前
葱饼完成签到 ,获得积分10
6秒前
Anquan完成签到,获得积分10
6秒前
yudandan@CJLU发布了新的文献求助10
7秒前
鱼儿123完成签到,获得积分10
7秒前
端庄的访枫完成签到 ,获得积分10
8秒前
车秋寒发布了新的文献求助10
8秒前
8秒前
完美秋烟完成签到,获得积分10
9秒前
10秒前
12秒前
lee1992完成签到,获得积分10
12秒前
nextconnie发布了新的文献求助10
13秒前
nextconnie发布了新的文献求助10
13秒前
nextconnie发布了新的文献求助10
13秒前
CO2发布了新的文献求助10
14秒前
uniquedl完成签到 ,获得积分10
14秒前
nextconnie发布了新的文献求助10
14秒前
子伊完成签到 ,获得积分10
15秒前
18秒前
18秒前
18秒前
今后应助憨鬼憨切采纳,获得10
20秒前
20秒前
21秒前
greenPASS666完成签到,获得积分10
23秒前
KYN发布了新的文献求助10
23秒前
24秒前
meng发布了新的文献求助10
24秒前
25秒前
Leon发布了新的文献求助10
25秒前
axunQAQ发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849