Learning Multimodal Networks From Heterogeneous Data for Prediction of lncRNA–miRNA Interactions

小RNA 计算机科学 计算生物学 人工智能 数据科学 生物 遗传学 基因
作者
Pengwei Hu,Yu‐An Huang,Keith C. C. Chan,Zhu‐Hong You
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (5): 1516-1524 被引量:35
标识
DOI:10.1109/tcbb.2019.2957094
摘要

Long noncoding RNAs (lncRNAs) is an important class of non-protein coding RNAs. They have recently been found to potentially be able to act as a regulatory molecule in some important biological processes. MicroRNAs (miRNAs) have been confirmed to be closely related to the regulation of various human diseases. Recent studies have suggested that lncRNAs could interact with miRNAs to modulate their regulatory roles. Hence, predicting lncRNA–miRNA interactions are biologically significant due to their potential roles in determining the effectiveness of diagnostic biomarkers and therapeutic targets for various human diseases. For the details of the mechanisms to be better understood, it would be useful if some computational approaches are developed to allow for such investigations. As diverse heterogeneous datasets for describing lncRNA and miRNA have been made available, it becomes more feasible for us to develop a model to describe potential interactions between lncRNAs and miRNAs. In this work, we present a novel computational approach called LMNLMI for such purpose. LMNLMI works in several phases. First, it learns patterns from expression, sequences and functional data. Based on the patterns, it then constructs several networks including an expression-similarity network, a functional-similarity network, and a sequence-similarity network. Based on a measure of similarities between these networks, LMNLMI computes an interaction score for each pair of lncRNA and miRNA in the database. The novelty of LMNLMI lies in the use of a network fusion technique to combine the patterns inherent in multiple similarity networks and a matrix completion technique in predicting interaction relationships. Using a set of real data, we show that LMNLMI can be a very effective approach for the accurate prediction of lncRNA-miRNA interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有圆圆发布了新的文献求助10
刚刚
ensolitemp完成签到,获得积分10
刚刚
刚刚
NexusExplorer应助燕知南采纳,获得10
刚刚
Orange应助汕头凯奇采纳,获得10
刚刚
王ccccc完成签到,获得积分10
1秒前
蔡老鬼完成签到,获得积分20
1秒前
小点点发布了新的文献求助10
1秒前
天真的馒头完成签到,获得积分20
1秒前
2秒前
2秒前
在水一方应助美好斓采纳,获得30
3秒前
天外来物发布了新的文献求助10
3秒前
3秒前
余一台完成签到 ,获得积分10
3秒前
3秒前
橙橙橙子发布了新的文献求助10
3秒前
tommyhechina发布了新的文献求助10
4秒前
ensolitemp发布了新的文献求助10
4秒前
4秒前
蔡老鬼发布了新的文献求助10
5秒前
Hello应助激昂的凝珍采纳,获得10
5秒前
6秒前
夜凉如水应助Yeah采纳,获得10
6秒前
好吃的蛋挞完成签到,获得积分10
7秒前
neilphilosci发布了新的文献求助10
7秒前
刻苦千琴发布了新的文献求助10
9秒前
今后应助ilzhuzhu采纳,获得10
9秒前
暮尘尘完成签到,获得积分10
9秒前
直率安双完成签到,获得积分10
9秒前
深情安青应助悠悠采纳,获得10
9秒前
Akim应助ZHa0采纳,获得30
9秒前
10秒前
哇哦完成签到 ,获得积分10
10秒前
Ayla雁翎完成签到 ,获得积分10
10秒前
10秒前
more应助lilac采纳,获得10
10秒前
爆米花应助小于采纳,获得10
12秒前
12秒前
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169302
求助须知:如何正确求助?哪些是违规求助? 2820519
关于积分的说明 7931311
捐赠科研通 2480910
什么是DOI,文献DOI怎么找? 1321571
科研通“疑难数据库(出版商)”最低求助积分说明 633287
版权声明 602528