Modelling European small pelagic fish distribution: Methodological insights

远洋带 物种分布 环境生态位模型 生态位 航程(航空) 环境科学 生态学 利基 采样(信号处理) 选型 渔业 生物 统计 栖息地 计算机科学 数学 滤波器(信号处理) 复合材料 材料科学 计算机视觉
作者
Alexandre Schickele,Boris Leroy,Grégory Beaugrand,Éric Goberville,Tarek Hattab,Patrice Francour,Virginie Raybaud
出处
期刊:Ecological Modelling [Elsevier]
卷期号:416: 108902-108902 被引量:51
标识
DOI:10.1016/j.ecolmodel.2019.108902
摘要

The distribution of marine organisms is strongly influenced by climatic gradients worldwide. The ecological niche (sensu Hutchinson) of a species, i.e. the combination of environmental tolerances and resources required by an organism, interacts with the environment to determine its geographical range. This duality between niche and distribution allows climate change biologists to model potential species’ distributions from past to future conditions. While species distribution models (SDMs) have been intensively used over the last years, no consensual framework to parametrise, calibrate and evaluate models has emerged. Here, to model the contemporary (1990–2017) spatial distribution of seven highly harvested European small pelagic fish species, we implemented a comprehensive and replicable numerical procedure based on 8 SDMs (7 from the Biomod2 framework plus the NPPEN model). This procedure considers critical issues in species distribution modelling such as sampling bias, pseudo-absence selection, model evaluation and uncertainty quantification respectively through (i) an environmental filtration of observation data, (ii) a convex hull based pseudo-absence selection, (iii) a multi-criteria evaluation of model outputs and (iv) an ensemble modelling approach. By mitigating environmental sampling bias in observation data and by identifying the most ecologically relevant predictors, our framework helps to improve the modelling of fish species’ environmental suitability. Not only average temperature, but also temperature variability appears as major factors driving small pelagic fish distribution, and areas of highest environmental suitability were found along the north-western Mediterranean coasts, the Bay of Biscay and the North Sea. We demonstrate in this study that the use of appropriate data pre-processing techniques, an often-overlooked step in modelling, increase model predictive performance, strengthening our confidence in the reliability of predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小可爱发布了新的文献求助10
1秒前
王逗逗发布了新的文献求助10
1秒前
FGG完成签到,获得积分10
2秒前
2秒前
3秒前
Jc完成签到 ,获得积分10
4秒前
完美世界应助Yxx采纳,获得10
4秒前
4秒前
搜集达人应助愤怒也呵呵采纳,获得10
4秒前
隐形曼青应助wll采纳,获得10
4秒前
4秒前
5秒前
6秒前
walawala发布了新的文献求助10
8秒前
华仔应助sje采纳,获得10
8秒前
白枫完成签到 ,获得积分10
8秒前
wuwuwu1wu发布了新的文献求助10
8秒前
宁小满发布了新的文献求助10
9秒前
10秒前
皮皮虾发布了新的文献求助10
10秒前
超级凡桃完成签到 ,获得积分10
11秒前
不配.应助开心采纳,获得10
11秒前
tianqing完成签到,获得积分10
12秒前
13秒前
居学尉完成签到,获得积分10
13秒前
NexusExplorer应助HHHH采纳,获得10
14秒前
15秒前
16秒前
JamesPei应助皮皮虾采纳,获得10
16秒前
17秒前
小李完成签到 ,获得积分10
17秒前
稳重的蜡烛完成签到,获得积分10
18秒前
wanci应助健壮的幻波采纳,获得10
18秒前
19秒前
听曲散步完成签到,获得积分10
19秒前
Yxx发布了新的文献求助10
20秒前
Amie发布了新的文献求助10
21秒前
22秒前
22秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138230
求助须知:如何正确求助?哪些是违规求助? 2789160
关于积分的说明 7790351
捐赠科研通 2445545
什么是DOI,文献DOI怎么找? 1300521
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046