Modelling European small pelagic fish distribution: Methodological insights

远洋带 物种分布 环境生态位模型 生态位 航程(航空) 环境科学 生态学 利基 采样(信号处理) 选型 渔业 生物 统计 栖息地 计算机科学 数学 滤波器(信号处理) 复合材料 材料科学 计算机视觉
作者
Alexandre Schickele,Boris Leroy,Grégory Beaugrand,Éric Goberville,Tarek Hattab,Patrice Francour,Virginie Raybaud
出处
期刊:Ecological Modelling [Elsevier BV]
卷期号:416: 108902-108902 被引量:51
标识
DOI:10.1016/j.ecolmodel.2019.108902
摘要

The distribution of marine organisms is strongly influenced by climatic gradients worldwide. The ecological niche (sensu Hutchinson) of a species, i.e. the combination of environmental tolerances and resources required by an organism, interacts with the environment to determine its geographical range. This duality between niche and distribution allows climate change biologists to model potential species’ distributions from past to future conditions. While species distribution models (SDMs) have been intensively used over the last years, no consensual framework to parametrise, calibrate and evaluate models has emerged. Here, to model the contemporary (1990–2017) spatial distribution of seven highly harvested European small pelagic fish species, we implemented a comprehensive and replicable numerical procedure based on 8 SDMs (7 from the Biomod2 framework plus the NPPEN model). This procedure considers critical issues in species distribution modelling such as sampling bias, pseudo-absence selection, model evaluation and uncertainty quantification respectively through (i) an environmental filtration of observation data, (ii) a convex hull based pseudo-absence selection, (iii) a multi-criteria evaluation of model outputs and (iv) an ensemble modelling approach. By mitigating environmental sampling bias in observation data and by identifying the most ecologically relevant predictors, our framework helps to improve the modelling of fish species’ environmental suitability. Not only average temperature, but also temperature variability appears as major factors driving small pelagic fish distribution, and areas of highest environmental suitability were found along the north-western Mediterranean coasts, the Bay of Biscay and the North Sea. We demonstrate in this study that the use of appropriate data pre-processing techniques, an often-overlooked step in modelling, increase model predictive performance, strengthening our confidence in the reliability of predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JoshuaChen发布了新的文献求助10
刚刚
刚刚
刚刚
isaac完成签到,获得积分10
2秒前
清秀涵易发布了新的文献求助10
2秒前
3秒前
3秒前
luoluo完成签到 ,获得积分10
3秒前
灵巧代柔完成签到,获得积分10
3秒前
4秒前
呆萌鱼完成签到,获得积分10
4秒前
121234发布了新的文献求助10
4秒前
4秒前
CipherSage应助nzxnzx采纳,获得10
4秒前
炸虾仁完成签到 ,获得积分10
5秒前
越红完成签到,获得积分10
5秒前
杰杰发布了新的文献求助10
6秒前
圆锥香蕉举报包钰韬求助涉嫌违规
6秒前
南迦完成签到,获得积分10
6秒前
NexusExplorer应助Liens采纳,获得10
6秒前
笨笨翰完成签到,获得积分10
6秒前
7秒前
kecheng应助荔枝采纳,获得10
7秒前
苯环完成签到,获得积分10
7秒前
屿若完成签到 ,获得积分10
7秒前
lv发布了新的文献求助10
7秒前
zhuang完成签到,获得积分10
8秒前
8秒前
zz发布了新的文献求助10
8秒前
樊小雾发布了新的文献求助10
8秒前
8秒前
善学以致用应助花生采纳,获得10
8秒前
超帅柚子完成签到 ,获得积分10
9秒前
JingjingYao完成签到,获得积分10
9秒前
9秒前
脑洞疼应助ZLY采纳,获得10
9秒前
yoga完成签到 ,获得积分10
9秒前
Sylvia0528发布了新的文献求助10
9秒前
FashionBoy应助rengar采纳,获得10
9秒前
OK不服气完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650