德罗沙
生物发生
转移RNA
小RNA
假尿苷
核糖核酸酶Ⅲ
计算生物学
细胞生物学
生物化学
生物
核糖核酸
基因
RNA干扰
作者
Jinghui Song,Yuan Zhuang,Chenxu Zhu,Haowei Meng,Bo Lu,Bingteng Xie,Jinying Peng,Mo Li,Chengqi Yi
标识
DOI:10.1038/s41589-019-0420-5
摘要
Pseudouridine synthases (PUSs) are responsible for installation of pseudouridine (Ψ) modification in RNA. However, the activity and function of the PUS enzymes remain largely unexplored. Here we focus on human PUS10 and find that it co-expresses with the microprocessor (DROSHA-DGCR8 complex). Depletion of PUS10 results in a marked reduction of the expression level of a large number of mature miRNAs and concomitant accumulation of unprocessed primary microRNAs (pri-miRNAs) in multiple human cells. Mechanistically, PUS10 directly binds to pri-miRNAs and interacts with the microprocessor to promote miRNA biogenesis. Unexpectedly, this process is independent of the catalytic activity of PUS10. Additionally, we develop a sequencing method to profile Ψ in the tRNAome and report PUS10-dependent Ψ sites in tRNA. Collectively, our findings reveal differential functions of PUS10 in nuclear miRNA processing and in cytoplasmic tRNA pseudouridylation.
科研通智能强力驱动
Strongly Powered by AbleSci AI