自噬
衰老
细胞生物学
间充质干细胞
p38丝裂原活化蛋白激酶
干细胞
化学
下调和上调
端粒
DNA损伤
细胞凋亡
生物
氧化应激
激酶
癌症研究
蛋白激酶A
生物化学
DNA
基因
作者
Dayong Zhang,Yifan Chen,Xianbin Xu,Haoyi Xiang,Yizhan Shi,Ying Gao,Xiaowen Wang,Xuefan Jiang,Na Li,Jianping Pan
标识
DOI:10.1111/1440-1681.13207
摘要
Abstract Autophagy and cellular senescence are two critical responses of mammalian cells to stress and may have a direct relationship given that they respond to the same set of stimuli, including oxidative stress, DNA damage, and telomere shortening. Mesenchymal stem cells (MSCs) have emerged as reliable cell sources for stem cell transplantation and are currently being tested in numerous clinical trials. However, the effects of autophagy on MSC senescence and corresponding mechanisms have not been fully evaluated. Several studies demonstrated that autophagy level increases in aging MSCs and the downregulation of autophagy can delay MSC senescence, which is inconsistent with most studies that showed autophagy could play a protective role in stem cell senescence. To further study the relationship between autophagy and MSC senescence and explore the effects and mechanisms of premodulated autophagy on MSC senescence, we induced the up‐ or down‐regulation of autophagy by using rapamycin (Rapa) or 3‐methyladenine, respectively, before MSC senescence induced by D‐galactose (D‐gal). Results showed that pretreatment with Rapa for 24 hours remarkably alleviated MSC aging induced by D‐gal and inhibited ROS generation. p‐Jun N‐terminal kinases (JNK) and p‐38 expression were also clearly decreased in the Rapa group. Moreover, the protective effect of Rapa on MSC senescence can be abolished by enhancing the level of ROS, and p38 inhibitor can reverse the promoting effect of H 2 O 2 on MSC senescence. In summary, the present study indicates that autophagy plays a protective role in MSC senescence induced by D‐gal, and ROS/JNK/p38 signalling plays an important mediating role in autophagy‐delaying MSC senescence.
科研通智能强力驱动
Strongly Powered by AbleSci AI