Deep mineralization of bisphenol A by catalytic peroxymonosulfate activation with nano CuO/Fe3O4 with strong Cu-Fe interaction

双金属 催化作用 双酚A 化学 氧化还原 核化学 无机化学 电子转移 还原剂 矿化(土壤科学) X射线光电子能谱 化学工程 纳米颗粒 材料科学 光化学 物理化学 纳米技术 有机化学 环氧树脂 生物化学 氮气 工程类
作者
Yaobin Ding,Cong Pan,Xueqin Peng,Qihang Mao,Yuwen Xiao,Libin Fu,Jia Huang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:384: 123378-123378 被引量:132
标识
DOI:10.1016/j.cej.2019.123378
摘要

Cu-Fe bimetal oxides yield excellent catalytic activity. However, there are some debates on Cu redox cycle and direction of electron transfer during PMS activation by these Cu-Fe bimetal oxides. In this paper, therefore, CuO/Fe3O4 nanoparticles with strong Cu-Fe interaction were prepared by pyrolysis of copper-hexacyanoferrate(III) at 600 °C for 1 h and used to investigate the effect of Cu-Fe interaction on catalytic performance of these Cu-Fe bimetal oxides. The as-prepared CuO/Fe3O4 as a catalyst presented much stronger reactivity than CuO and Fe3O4 for peroxymonosulfate (PMS) activation and bisphenol A (BPA) degradation. The use of 0.3 g L−1 CuO/Fe3O4 and 0.3 mmol L−1 PMS achieved deep mineralization (>99%) in 110 min for degradation of 20 mg L−1 BPA at initial pH 6.0. The k value for BPA degradation was 0.32 min−1 for CuO/Fe3O4, being about 5.3, 3.2 and 2.7 times that for the catalysts of Fe3O4, CuO and the mixture of CuO and Fe3O4, respectively. The synergistic effect between Cu and Fe sites on the surface of CuO/Fe3O4 nanoparticles was attributable to strong Cu-Fe interaction. Characterization by X-ray photoelectron spectra and temperature-programmed reduction with H2 as a reducing agent showed that the strong Cu-Fe interaction makes Cu species more easily donate electrons to PMS for radicals generation as the main reactive sites and reductive cycle of Fe species easier through accepting electrons from PMS, further promoting Cu catalytic cycle through an electron transfer between Cu and Fe. The clarification of structure activity relationship (SAR) of interaction between bimetal species and their activity for peroxide activation facilitates deep understand of the catalytic mechanism and development of more efficient bimetal based catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chai发布了新的文献求助10
刚刚
刚刚
刚刚
yt发布了新的文献求助10
1秒前
五1232发布了新的文献求助10
1秒前
坦率的曲奇完成签到,获得积分10
1秒前
3秒前
4秒前
NOT发布了新的文献求助10
6秒前
7秒前
Archie发布了新的文献求助30
7秒前
平方完成签到,获得积分10
7秒前
cym完成签到,获得积分10
7秒前
Jin完成签到 ,获得积分10
8秒前
77完成签到 ,获得积分10
9秒前
shanshan发布了新的文献求助10
9秒前
10秒前
10秒前
哈哈完成签到,获得积分20
10秒前
11秒前
11秒前
13秒前
西柚稀有西柚完成签到,获得积分10
13秒前
碧蓝怜梦发布了新的文献求助10
13秒前
充电宝应助ln采纳,获得30
14秒前
我是老大应助Archie采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
科研通AI6应助燕子采纳,获得10
17秒前
哈哈发布了新的文献求助10
17秒前
科研通AI6应助DD采纳,获得10
17秒前
sun发布了新的文献求助30
17秒前
唐ZY123发布了新的文献求助30
17秒前
深情安青应助CMJ采纳,获得10
18秒前
19秒前
19秒前
20秒前
疆男完成签到,获得积分10
20秒前
心静如水发布了新的文献求助10
20秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656742
求助须知:如何正确求助?哪些是违规求助? 4805800
关于积分的说明 15077356
捐赠科研通 4814948
什么是DOI,文献DOI怎么找? 2576219
邀请新用户注册赠送积分活动 1531465
关于科研通互助平台的介绍 1490025