Forecasting of Vegetable Prices using STL-LSTM Method

农业 产品(数学) 农业经济学 供求关系 政府(语言学) 计量经济学 经济 市场价格 环境经济学 计算机科学 数学 微观经济学 地理 语言学 哲学 考古 几何学
作者
Jin Dong,Helin Yin,Yeonghyeon Gu,Seong Joon Yoo
标识
DOI:10.1109/icsai48974.2019.9010181
摘要

Agricultural product prices play an important role in the agricultural market. Vegetables have the largest supply and price fluctuations among agricultural products. As vegetables are grown outdoor and their yields change considerably according to meteorological changes, it is difficult to stabilize the supply and prices of vegetables. Thus, vegetables have a large effect on the national economy. Although the government makes many efforts to stabilize the supply and prices of vegetables, but frequent meteorological changes in recent years have led to unstable supply and price fluctuations of vegetables. Therefore, the correct forecasting of vegetable prices is an important issue. To deal with such an issue, this study suggests a vegetable price forecasting model that uses the seasonal-trend-loess (STL) preprocessing method, and long short-term memory (LSTM), a deep learning algorithm. The model was used to forecast monthly prices of vegetables using vegetable price data, meteorological data of chief producing districts, and other data. In this study, the model was applied to Chinese cabbages and radishes in the Korean agricultural market. The results of performance measurement show that the suggested vegetable price forecasting model had forecast accuracies of 92.06% and 88.74%, respectively, about Chinese cabbages and radishes. It is expected that the model can be used for an autonomous adjustment of supply demand and to develop relevant policies in order to save social costs in relation to agricultural product yields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cjq完成签到,获得积分10
刚刚
刚刚
小马甲应助123采纳,获得10
1秒前
Long完成签到,获得积分10
1秒前
2秒前
晚生四时完成签到,获得积分10
2秒前
2秒前
2秒前
长情洙发布了新的文献求助10
2秒前
天真的宝马完成签到,获得积分10
2秒前
3秒前
肉松小贝完成签到,获得积分10
3秒前
4秒前
4秒前
HEIKU应助yangyangyang采纳,获得10
4秒前
Esfuerzo完成签到,获得积分10
4秒前
科研通AI5应助安静的安寒采纳,获得10
5秒前
吃鸡蛋不吃鸡蛋黄完成签到,获得积分10
5秒前
royan2完成签到,获得积分10
5秒前
阿勒泰完成签到,获得积分10
5秒前
小于爱科研完成签到,获得积分10
5秒前
5秒前
zkc完成签到,获得积分10
5秒前
5秒前
luo发布了新的文献求助30
5秒前
雾蓝发布了新的文献求助10
5秒前
6秒前
zhang发布了新的文献求助10
6秒前
佳佳发布了新的文献求助10
7秒前
royan2发布了新的文献求助10
7秒前
7秒前
zkc发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
沐沐君完成签到,获得积分10
8秒前
nancyzhy完成签到,获得积分10
8秒前
当时明月在完成签到,获得积分0
8秒前
共享精神应助无情念之采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759