Assessment of knee pain from MR imaging using a convolutional Siamese network

医学 膝关节痛 骨关节炎 磁共振成像 神经组阅片室 矢状面 放射科 沃马克 深度学习 膝关节 卷积神经网络 物理疗法 物理医学与康复 人工智能 外科 计算机科学 神经学 病理 替代医学 精神科
作者
Gary H. Chang,David T. Felson,Shangran Qiu,Ali Guermazi,Terence D. Capellini,Vijaya B. Kolachalama
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:30 (6): 3538-3548 被引量:48
标识
DOI:10.1007/s00330-020-06658-3
摘要

It remains difficult to characterize the source of pain in knee joints either using radiographs or magnetic resonance imaging (MRI). We sought to determine if advanced machine learning methods such as deep neural networks could distinguish knees with pain from those without it and identify the structural features that are associated with knee pain.We constructed a convolutional Siamese network to associate MRI scans obtained on subjects from the Osteoarthritis Initiative (OAI) with frequent unilateral knee pain comparing the knee with frequent pain to the contralateral knee without pain. The Siamese network architecture enabled pairwise learning of information from two-dimensional (2D) sagittal intermediate-weighted turbo spin echo slices obtained from similar locations on both knees. Class activation mapping (CAM) was utilized to create saliency maps, which highlighted the regions most associated with knee pain. The MRI scans and the CAMs of each subject were reviewed by an expert radiologist to identify the presence of abnormalities within the model-predicted regions of high association.Using 10-fold cross-validation, our model achieved an area under curve (AUC) value of 0.808. When individuals whose knee WOMAC pain scores were not discordant were excluded, model performance increased to 0.853. The radiologist review revealed that about 86% of the cases that were predicted correctly had effusion-synovitis within the regions that were most associated with pain.This study demonstrates a proof of principle that deep learning can be applied to assess knee pain from MRI scans.• Our article is the first to leverage a deep learning framework to associate MR images of the knee with knee pain. • We developed a convolutional Siamese network that had the ability to fuse information from multiple two-dimensional (2D) MRI slices from the knee with pain and the contralateral knee of the same individual without pain to predict unilateral knee pain. • Our model achieved an area under curve (AUC) value of 0.808. When individuals who had WOMAC pain scores that were not discordant for knees (pain discordance < 3) were excluded, model performance increased to 0.853.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kate完成签到,获得积分10
刚刚
1秒前
Vicky完成签到,获得积分10
2秒前
科研通AI6应助姜晓枫采纳,获得10
2秒前
2秒前
Dominic7888完成签到,获得积分10
3秒前
xu完成签到,获得积分10
3秒前
JXY发布了新的文献求助10
3秒前
勤劳的鸡发布了新的文献求助30
4秒前
完美世界应助thinking采纳,获得10
4秒前
Lucas应助infe采纳,获得10
5秒前
王富贵发布了新的文献求助10
5秒前
5秒前
Allen完成签到,获得积分10
7秒前
7秒前
8秒前
Sabrina完成签到,获得积分10
8秒前
老张完成签到 ,获得积分10
8秒前
9秒前
单纯胡萝卜完成签到,获得积分10
10秒前
luo完成签到,获得积分10
10秒前
10秒前
虚幻夜白发布了新的文献求助10
11秒前
11秒前
张涛发布了新的文献求助30
11秒前
11秒前
圆圆发布了新的文献求助10
12秒前
13秒前
玉玉鼠发布了新的文献求助10
13秒前
14秒前
刘洋发布了新的文献求助10
15秒前
15秒前
笨笨西牛发布了新的文献求助10
15秒前
jy完成签到 ,获得积分10
16秒前
to高坚果发布了新的文献求助10
16秒前
passerby发布了新的文献求助10
17秒前
17秒前
pdx666完成签到,获得积分10
19秒前
丘比特应助缪伟采纳,获得10
19秒前
JXY完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577935
求助须知:如何正确求助?哪些是违规求助? 3997037
关于积分的说明 12374100
捐赠科研通 3671042
什么是DOI,文献DOI怎么找? 2023214
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176