亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of knee pain from MR imaging using a convolutional Siamese network

医学 膝关节痛 骨关节炎 磁共振成像 神经组阅片室 矢状面 放射科 沃马克 深度学习 膝关节 卷积神经网络 物理疗法 物理医学与康复 人工智能 外科 计算机科学 神经学 病理 替代医学 精神科
作者
Gary H. Chang,David T. Felson,Shangran Qiu,Ali Guermazi,Terence D. Capellini,Vijaya B. Kolachalama
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (6): 3538-3548 被引量:48
标识
DOI:10.1007/s00330-020-06658-3
摘要

It remains difficult to characterize the source of pain in knee joints either using radiographs or magnetic resonance imaging (MRI). We sought to determine if advanced machine learning methods such as deep neural networks could distinguish knees with pain from those without it and identify the structural features that are associated with knee pain.We constructed a convolutional Siamese network to associate MRI scans obtained on subjects from the Osteoarthritis Initiative (OAI) with frequent unilateral knee pain comparing the knee with frequent pain to the contralateral knee without pain. The Siamese network architecture enabled pairwise learning of information from two-dimensional (2D) sagittal intermediate-weighted turbo spin echo slices obtained from similar locations on both knees. Class activation mapping (CAM) was utilized to create saliency maps, which highlighted the regions most associated with knee pain. The MRI scans and the CAMs of each subject were reviewed by an expert radiologist to identify the presence of abnormalities within the model-predicted regions of high association.Using 10-fold cross-validation, our model achieved an area under curve (AUC) value of 0.808. When individuals whose knee WOMAC pain scores were not discordant were excluded, model performance increased to 0.853. The radiologist review revealed that about 86% of the cases that were predicted correctly had effusion-synovitis within the regions that were most associated with pain.This study demonstrates a proof of principle that deep learning can be applied to assess knee pain from MRI scans.• Our article is the first to leverage a deep learning framework to associate MR images of the knee with knee pain. • We developed a convolutional Siamese network that had the ability to fuse information from multiple two-dimensional (2D) MRI slices from the knee with pain and the contralateral knee of the same individual without pain to predict unilateral knee pain. • Our model achieved an area under curve (AUC) value of 0.808. When individuals who had WOMAC pain scores that were not discordant for knees (pain discordance < 3) were excluded, model performance increased to 0.853.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
34秒前
桃子爱学习完成签到 ,获得积分10
44秒前
59秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
kingcoffee完成签到 ,获得积分10
1分钟前
1分钟前
艺霖大王发布了新的文献求助10
2分钟前
冬去春来完成签到 ,获得积分10
2分钟前
lanxinge完成签到 ,获得积分20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
聪明安白完成签到,获得积分10
3分钟前
3分钟前
聪明安白发布了新的文献求助10
3分钟前
科研通AI2S应助聪明安白采纳,获得10
4分钟前
JamesPei应助聪明安白采纳,获得10
4分钟前
4分钟前
苏苏发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
清风发布了新的文献求助10
6分钟前
yema完成签到 ,获得积分10
6分钟前
清风完成签到,获得积分10
6分钟前
DoubleW完成签到 ,获得积分10
7分钟前
方方别方应助科研通管家采纳,获得10
7分钟前
科目三应助长安采纳,获得10
7分钟前
lzy完成签到,获得积分10
8分钟前
共享精神应助30采纳,获得10
8分钟前
忧虑的翠桃完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
9分钟前
长安发布了新的文献求助10
9分钟前
10分钟前
吴WU发布了新的文献求助10
10分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450450
求助须知:如何正确求助?哪些是违规求助? 3045935
关于积分的说明 9003716
捐赠科研通 2734577
什么是DOI,文献DOI怎么找? 1500058
科研通“疑难数据库(出版商)”最低求助积分说明 693318
邀请新用户注册赠送积分活动 691462