Assessment of knee pain from MR imaging using a convolutional Siamese network

医学 膝关节痛 骨关节炎 磁共振成像 神经组阅片室 矢状面 放射科 沃马克 深度学习 膝关节 卷积神经网络 物理疗法 物理医学与康复 人工智能 外科 计算机科学 神经学 病理 替代医学 精神科
作者
Gary H. Chang,David T. Felson,Shangran Qiu,Ali Guermazi,Terence D. Capellini,Vijaya B. Kolachalama
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:30 (6): 3538-3548 被引量:48
标识
DOI:10.1007/s00330-020-06658-3
摘要

It remains difficult to characterize the source of pain in knee joints either using radiographs or magnetic resonance imaging (MRI). We sought to determine if advanced machine learning methods such as deep neural networks could distinguish knees with pain from those without it and identify the structural features that are associated with knee pain.We constructed a convolutional Siamese network to associate MRI scans obtained on subjects from the Osteoarthritis Initiative (OAI) with frequent unilateral knee pain comparing the knee with frequent pain to the contralateral knee without pain. The Siamese network architecture enabled pairwise learning of information from two-dimensional (2D) sagittal intermediate-weighted turbo spin echo slices obtained from similar locations on both knees. Class activation mapping (CAM) was utilized to create saliency maps, which highlighted the regions most associated with knee pain. The MRI scans and the CAMs of each subject were reviewed by an expert radiologist to identify the presence of abnormalities within the model-predicted regions of high association.Using 10-fold cross-validation, our model achieved an area under curve (AUC) value of 0.808. When individuals whose knee WOMAC pain scores were not discordant were excluded, model performance increased to 0.853. The radiologist review revealed that about 86% of the cases that were predicted correctly had effusion-synovitis within the regions that were most associated with pain.This study demonstrates a proof of principle that deep learning can be applied to assess knee pain from MRI scans.• Our article is the first to leverage a deep learning framework to associate MR images of the knee with knee pain. • We developed a convolutional Siamese network that had the ability to fuse information from multiple two-dimensional (2D) MRI slices from the knee with pain and the contralateral knee of the same individual without pain to predict unilateral knee pain. • Our model achieved an area under curve (AUC) value of 0.808. When individuals who had WOMAC pain scores that were not discordant for knees (pain discordance < 3) were excluded, model performance increased to 0.853.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡完成签到 ,获得积分10
1秒前
2秒前
hao完成签到,获得积分20
4秒前
5秒前
酷波er应助妮妮采纳,获得10
9秒前
9秒前
大气亦巧完成签到,获得积分10
10秒前
汤汤杨杨完成签到,获得积分10
12秒前
汉堡包应助tutu采纳,获得10
12秒前
年轻板凳发布了新的文献求助10
13秒前
demo1发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
专注大门发布了新的文献求助20
15秒前
埋头苦干科研完成签到,获得积分10
16秒前
SciGPT应助y13333采纳,获得10
16秒前
淡然子轩完成签到,获得积分10
16秒前
Sebastian完成签到,获得积分10
17秒前
哈哈里完成签到 ,获得积分10
17秒前
狸花小喵完成签到,获得积分10
19秒前
20秒前
1111发布了新的文献求助10
21秒前
21秒前
22秒前
yaya发布了新的文献求助10
24秒前
25秒前
25秒前
25秒前
hao发布了新的文献求助10
25秒前
AnasYusuf发布了新的文献求助10
28秒前
30秒前
勤恳的德地完成签到,获得积分10
30秒前
丫丫发布了新的文献求助10
31秒前
上官若男应助lzz采纳,获得10
32秒前
Dreamer完成签到,获得积分10
33秒前
顾矜应助坚强丹雪采纳,获得10
35秒前
烂漫的静枫完成签到,获得积分10
35秒前
AnasYusuf完成签到,获得积分10
38秒前
深情安青应助CC采纳,获得10
39秒前
ying完成签到,获得积分10
40秒前
43秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150