Assessment of knee pain from MR imaging using a convolutional Siamese network

医学 膝关节痛 骨关节炎 磁共振成像 神经组阅片室 矢状面 放射科 沃马克 深度学习 膝关节 卷积神经网络 物理疗法 物理医学与康复 人工智能 外科 计算机科学 神经学 病理 替代医学 精神科
作者
Gary H. Chang,David T. Felson,Shangran Qiu,Ali Guermazi,Terence D. Capellini,Vijaya B. Kolachalama
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (6): 3538-3548 被引量:48
标识
DOI:10.1007/s00330-020-06658-3
摘要

It remains difficult to characterize the source of pain in knee joints either using radiographs or magnetic resonance imaging (MRI). We sought to determine if advanced machine learning methods such as deep neural networks could distinguish knees with pain from those without it and identify the structural features that are associated with knee pain.We constructed a convolutional Siamese network to associate MRI scans obtained on subjects from the Osteoarthritis Initiative (OAI) with frequent unilateral knee pain comparing the knee with frequent pain to the contralateral knee without pain. The Siamese network architecture enabled pairwise learning of information from two-dimensional (2D) sagittal intermediate-weighted turbo spin echo slices obtained from similar locations on both knees. Class activation mapping (CAM) was utilized to create saliency maps, which highlighted the regions most associated with knee pain. The MRI scans and the CAMs of each subject were reviewed by an expert radiologist to identify the presence of abnormalities within the model-predicted regions of high association.Using 10-fold cross-validation, our model achieved an area under curve (AUC) value of 0.808. When individuals whose knee WOMAC pain scores were not discordant were excluded, model performance increased to 0.853. The radiologist review revealed that about 86% of the cases that were predicted correctly had effusion-synovitis within the regions that were most associated with pain.This study demonstrates a proof of principle that deep learning can be applied to assess knee pain from MRI scans.• Our article is the first to leverage a deep learning framework to associate MR images of the knee with knee pain. • We developed a convolutional Siamese network that had the ability to fuse information from multiple two-dimensional (2D) MRI slices from the knee with pain and the contralateral knee of the same individual without pain to predict unilateral knee pain. • Our model achieved an area under curve (AUC) value of 0.808. When individuals who had WOMAC pain scores that were not discordant for knees (pain discordance < 3) were excluded, model performance increased to 0.853.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿玺完成签到,获得积分10
3秒前
yy完成签到 ,获得积分10
4秒前
ninomae完成签到 ,获得积分10
4秒前
Millie_Ho完成签到,获得积分10
6秒前
6秒前
6秒前
zxdw完成签到,获得积分10
7秒前
今后应助海绵宝宝采纳,获得10
9秒前
jepson0205完成签到,获得积分20
9秒前
小鱼医生完成签到 ,获得积分10
10秒前
粗犷的路灯完成签到,获得积分10
11秒前
12秒前
包包琪完成签到 ,获得积分10
12秒前
丛玉林完成签到,获得积分10
14秒前
小蘑菇应助彩卷卷采纳,获得10
16秒前
翁雁丝完成签到 ,获得积分10
16秒前
17秒前
lilylwy完成签到 ,获得积分0
20秒前
猪猪完成签到 ,获得积分10
21秒前
海绵宝宝发布了新的文献求助10
22秒前
castle完成签到,获得积分10
23秒前
一天完成签到 ,获得积分10
23秒前
长风破浪发布了新的文献求助10
23秒前
30秒前
朴实钥匙完成签到,获得积分10
34秒前
眯眯眼的雪莲完成签到 ,获得积分10
35秒前
朝圣者发布了新的文献求助10
37秒前
小红要发文章哦完成签到,获得积分10
39秒前
正直的夏真完成签到 ,获得积分10
40秒前
鲤鱼完成签到,获得积分10
40秒前
40秒前
lwl完成签到,获得积分10
40秒前
40秒前
sonicker完成签到 ,获得积分10
41秒前
世无我完成签到,获得积分10
44秒前
是真的完成签到 ,获得积分10
52秒前
趙途嘵生完成签到,获得积分10
53秒前
星辰大海应助科研通管家采纳,获得150
55秒前
LPPQBB应助科研通管家采纳,获得150
55秒前
科研通AI6应助科研通管家采纳,获得10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293975
求助须知:如何正确求助?哪些是违规求助? 4443988
关于积分的说明 13831887
捐赠科研通 4327968
什么是DOI,文献DOI怎么找? 2375834
邀请新用户注册赠送积分活动 1371109
关于科研通互助平台的介绍 1336150