亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reliable Federated Learning for Mobile Networks

计算机科学 联合学习 移动设备 声誉 杠杆(统计) 计算机安全 机器学习 分布式计算 万维网 社会科学 社会学
作者
Jiawen Kang,Zehui Xiong,Dusit Niyato,Yuze Zou,Yang Zhang,Mohsen Guizani
出处
期刊:IEEE Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:27 (2): 72-80 被引量:461
标识
DOI:10.1109/mwc.001.1900119
摘要

Federated learning, as a promising machine learning approach, has emerged to leverage a distributed personalized dataset from a number of nodes, for example, mobile devices, to improve performance while simultaneously providing privacy preservation for mobile users. In federated learning, training data is widely distributed and maintained on the mobile devices as workers. A central aggregator updates a global model by collecting local updates from mobile devices using their local training data to train the global model in each iteration. However, unreliable data may be uploaded by the mobile devices (i.e., workers), leading to frauds in tasks of federated learning. The workers may perform unreliable updates intentionally, for example, the data poisoning attack, or unintentionally, for example, low-quality data caused by energy constraints or high-speed mobility. Therefore, finding out trusted and reliable workers in federated learning tasks becomes critical. In this article, the concept of reputation is introduced as a metric. Based on this metric, a reliable worker selection scheme is proposed for federated learning tasks. Consortium blockchain is leveraged as a decentralized approach for achieving efficient reputation management of the workers without repudiation and tampering. By numerical analysis, the proposed approach is demonstrated to improve the reliability of federated learning tasks in mobile networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小红薯7XJ9B2Q4完成签到,获得积分10
3秒前
7秒前
11秒前
chen发布了新的文献求助10
13秒前
15秒前
思源应助娃哈哈采纳,获得10
22秒前
wms发布了新的文献求助10
26秒前
36秒前
38秒前
快乐寻冬发布了新的文献求助10
44秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
jyy应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
小马甲应助快乐寻冬采纳,获得10
51秒前
breeze发布了新的文献求助10
1分钟前
1分钟前
稻子完成签到 ,获得积分10
1分钟前
wms完成签到,获得积分10
1分钟前
MchemG完成签到,获得积分0
1分钟前
Benhnhk21完成签到,获得积分10
1分钟前
jfc完成签到 ,获得积分10
1分钟前
1分钟前
独特的沛凝完成签到,获得积分10
1分钟前
1分钟前
2分钟前
共享精神应助饺子采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
chen发布了新的文献求助10
3分钟前
饺子发布了新的文献求助10
3分钟前
Eatanicecube完成签到,获得积分10
3分钟前
饺子完成签到,获得积分10
3分钟前
3分钟前
3分钟前
共享精神应助tangyuan采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455668
求助须知:如何正确求助?哪些是违规求助? 3050920
关于积分的说明 9023006
捐赠科研通 2739455
什么是DOI,文献DOI怎么找? 1502869
科研通“疑难数据库(出版商)”最低求助积分说明 694628
邀请新用户注册赠送积分活动 693413