Robust Deep Neural Networks for Road Extraction From Remote Sensing Images

Softmax函数 计算机科学 稳健性(进化) 概率逻辑 人工神经网络 人工智能 噪音(视频) 深层神经网络 深度学习 机器学习 正规化(语言学) 统计模型 估计员 噪声测量 模式识别(心理学) 数据挖掘 降噪 图像(数学) 数学 统计 化学 基因 生物化学
作者
Panle Li,Xiaohui He,Mengjia Qiao,Xijie Cheng,Zhiqiang Li,Haotian Luo,Dingjun Song,Daidong Li,Shaokai Hu,Runchuan Li,Pu Han,Fangbing Qiu,Hengliang Guo,Jiandong Shang,Zengshan Tian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (7): 6182-6197 被引量:16
标识
DOI:10.1109/tgrs.2020.3023112
摘要

The application of deep neural networks (DNNs) for road extraction from remote sensing images has gained broad interest because of the competence concerning complex nonlinear relations; however, the presence of noisy labels in the training data sets adversely affects the performance of DNNs. The existing methods of improving the robustness of DNNs focus on modeling the noise distribution. However, these approaches are not satisfactory because of the inaccurate high-level image features obtained by the DNNs. To address this issue, we develop a noise probabilistic model for learning the label noise based on the relationship between the input images, noisy labels, and true labels. The key idea of the probabilistic model is to directly explore the information from the input images and apply it to model the label noise. Then, a robust deep neural network (RDNN) is proposed to instantiate the noise probabilistic model, which consists of two important modules: the true label predictor (TLP) and the noise label estimator (NLE). Especially, the TLP is made of a DNN with softmax, which is used to learn the true label distribution. The NLE is applied to model the label noise distribution, which aims to absorb the label noise in the training process. Moreover, to tackle the challenges in the optimization, we deduce a loss function with the novel regularization, which allows the RDNN to conduct effective training on the noise data set. The effectiveness of the proposed method is validated by experiments on three road data sets that contain various resolutions and imaging conditions. The results demonstrate its superiority over state-of-the-art methods in visual performance and classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助XHL采纳,获得10
1秒前
可爱花瓣发布了新的文献求助10
1秒前
折纸发布了新的文献求助10
1秒前
2秒前
2秒前
xx发布了新的文献求助10
2秒前
3秒前
闪闪完成签到,获得积分20
3秒前
科目三应助杨佳燕采纳,获得10
3秒前
大气的以寒完成签到,获得积分10
3秒前
4秒前
淋湿巴黎完成签到,获得积分10
4秒前
4秒前
5秒前
晨曦完成签到,获得积分10
5秒前
6秒前
7分运气完成签到,获得积分10
6秒前
张三发布了新的文献求助10
7秒前
草田水完成签到,获得积分10
8秒前
CNJX完成签到,获得积分10
8秒前
8秒前
彭于晏应助tony采纳,获得10
8秒前
Wonderland发布了新的文献求助10
8秒前
xcgh应助脆皮小小酥采纳,获得20
9秒前
燕子发布了新的文献求助30
9秒前
9秒前
10秒前
11秒前
12秒前
欢欢发布了新的文献求助10
12秒前
13秒前
14秒前
木木完成签到,获得积分10
14秒前
科研通AI6应助Amagi采纳,获得10
14秒前
所所应助自信的诗霜采纳,获得10
15秒前
16秒前
Yanglk发布了新的文献求助10
16秒前
16秒前
jiangqingquan发布了新的文献求助10
16秒前
jinyu完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285417
求助须知:如何正确求助?哪些是违规求助? 4438512
关于积分的说明 13817541
捐赠科研通 4319833
什么是DOI,文献DOI怎么找? 2371192
邀请新用户注册赠送积分活动 1366728
关于科研通互助平台的介绍 1330185