亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust Deep Neural Networks for Road Extraction From Remote Sensing Images

Softmax函数 计算机科学 稳健性(进化) 概率逻辑 人工神经网络 人工智能 噪音(视频) 深层神经网络 深度学习 机器学习 正规化(语言学) 统计模型 估计员 噪声测量 模式识别(心理学) 数据挖掘 降噪 图像(数学) 数学 统计 化学 基因 生物化学
作者
Panle Li,Xiaohui He,Mengjia Qiao,Xijie Cheng,Zhiqiang Li,Haotian Luo,Dingjun Song,Daidong Li,Shaokai Hu,Runchuan Li,Pu Han,Fangbing Qiu,Hengliang Guo,Jiandong Shang,Zengshan Tian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (7): 6182-6197 被引量:16
标识
DOI:10.1109/tgrs.2020.3023112
摘要

The application of deep neural networks (DNNs) for road extraction from remote sensing images has gained broad interest because of the competence concerning complex nonlinear relations; however, the presence of noisy labels in the training data sets adversely affects the performance of DNNs. The existing methods of improving the robustness of DNNs focus on modeling the noise distribution. However, these approaches are not satisfactory because of the inaccurate high-level image features obtained by the DNNs. To address this issue, we develop a noise probabilistic model for learning the label noise based on the relationship between the input images, noisy labels, and true labels. The key idea of the probabilistic model is to directly explore the information from the input images and apply it to model the label noise. Then, a robust deep neural network (RDNN) is proposed to instantiate the noise probabilistic model, which consists of two important modules: the true label predictor (TLP) and the noise label estimator (NLE). Especially, the TLP is made of a DNN with softmax, which is used to learn the true label distribution. The NLE is applied to model the label noise distribution, which aims to absorb the label noise in the training process. Moreover, to tackle the challenges in the optimization, we deduce a loss function with the novel regularization, which allows the RDNN to conduct effective training on the noise data set. The effectiveness of the proposed method is validated by experiments on three road data sets that contain various resolutions and imaging conditions. The results demonstrate its superiority over state-of-the-art methods in visual performance and classification accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
10秒前
28秒前
汉堡包应助Developing_human采纳,获得10
34秒前
36秒前
44秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
暴躁的奇异果完成签到,获得积分10
2分钟前
2分钟前
领导范儿应助Ming采纳,获得10
3分钟前
3分钟前
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
George发布了新的文献求助10
4分钟前
4分钟前
Ming发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Enso完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
阿里给阿里的求助进行了留言
5分钟前
小透明发布了新的文献求助10
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664501
求助须知:如何正确求助?哪些是违规求助? 4863056
关于积分的说明 15107857
捐赠科研通 4823130
什么是DOI,文献DOI怎么找? 2581958
邀请新用户注册赠送积分活动 1536065
关于科研通互助平台的介绍 1494491