Robust Deep Neural Networks for Road Extraction From Remote Sensing Images

Softmax函数 计算机科学 稳健性(进化) 概率逻辑 人工神经网络 人工智能 噪音(视频) 深层神经网络 深度学习 机器学习 正规化(语言学) 统计模型 估计员 噪声测量 模式识别(心理学) 数据挖掘 降噪 图像(数学) 数学 统计 化学 基因 生物化学
作者
Panle Li,Xiaohui He,Mengjia Qiao,Xijie Cheng,Zhiqiang Li,Haotian Luo,Dingjun Song,Daidong Li,Shaokai Hu,Runchuan Li,Pu Han,Fangbing Qiu,Hengliang Guo,Jiandong Shang,Zengshan Tian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (7): 6182-6197 被引量:16
标识
DOI:10.1109/tgrs.2020.3023112
摘要

The application of deep neural networks (DNNs) for road extraction from remote sensing images has gained broad interest because of the competence concerning complex nonlinear relations; however, the presence of noisy labels in the training data sets adversely affects the performance of DNNs. The existing methods of improving the robustness of DNNs focus on modeling the noise distribution. However, these approaches are not satisfactory because of the inaccurate high-level image features obtained by the DNNs. To address this issue, we develop a noise probabilistic model for learning the label noise based on the relationship between the input images, noisy labels, and true labels. The key idea of the probabilistic model is to directly explore the information from the input images and apply it to model the label noise. Then, a robust deep neural network (RDNN) is proposed to instantiate the noise probabilistic model, which consists of two important modules: the true label predictor (TLP) and the noise label estimator (NLE). Especially, the TLP is made of a DNN with softmax, which is used to learn the true label distribution. The NLE is applied to model the label noise distribution, which aims to absorb the label noise in the training process. Moreover, to tackle the challenges in the optimization, we deduce a loss function with the novel regularization, which allows the RDNN to conduct effective training on the noise data set. The effectiveness of the proposed method is validated by experiments on three road data sets that contain various resolutions and imaging conditions. The results demonstrate its superiority over state-of-the-art methods in visual performance and classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
传奇3应助snow采纳,获得10
2秒前
Akim应助沃森的克里克采纳,获得10
2秒前
2秒前
2秒前
小炮弹完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
zjq4302发布了新的文献求助10
4秒前
4秒前
yookia完成签到,获得积分0
6秒前
莫庆玲完成签到,获得积分10
6秒前
6秒前
yutingting发布了新的文献求助10
6秒前
7秒前
逍遥发布了新的文献求助200
7秒前
CipherSage应助严惜采纳,获得10
7秒前
pika1234发布了新的文献求助10
8秒前
土豆很好吃完成签到,获得积分10
8秒前
东东发布了新的文献求助10
8秒前
9秒前
白派派主发布了新的文献求助10
9秒前
yyst发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
Lxk完成签到,获得积分10
11秒前
haofan17完成签到,获得积分0
11秒前
难过的慕青完成签到,获得积分10
12秒前
ghhu发布了新的文献求助10
12秒前
14秒前
xy发布了新的文献求助10
14秒前
张雯思发布了新的文献求助10
15秒前
15秒前
16秒前
又又完成签到,获得积分10
16秒前
怡然小蚂蚁完成签到 ,获得积分10
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992117
求助须知:如何正确求助?哪些是违规求助? 3533123
关于积分的说明 11261129
捐赠科研通 3272496
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882717
科研通“疑难数据库(出版商)”最低求助积分说明 809425