Robust Deep Neural Networks for Road Extraction From Remote Sensing Images

Softmax函数 计算机科学 稳健性(进化) 概率逻辑 人工神经网络 人工智能 噪音(视频) 深层神经网络 深度学习 机器学习 正规化(语言学) 统计模型 估计员 噪声测量 模式识别(心理学) 数据挖掘 降噪 图像(数学) 数学 统计 化学 基因 生物化学
作者
Panle Li,Xiaohui He,Mengjia Qiao,Xijie Cheng,Zhiqiang Li,Haotian Luo,Dingjun Song,Daidong Li,Shaokai Hu,Runchuan Li,Pu Han,Fangbing Qiu,Hengliang Guo,Jiandong Shang,Zengshan Tian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (7): 6182-6197 被引量:16
标识
DOI:10.1109/tgrs.2020.3023112
摘要

The application of deep neural networks (DNNs) for road extraction from remote sensing images has gained broad interest because of the competence concerning complex nonlinear relations; however, the presence of noisy labels in the training data sets adversely affects the performance of DNNs. The existing methods of improving the robustness of DNNs focus on modeling the noise distribution. However, these approaches are not satisfactory because of the inaccurate high-level image features obtained by the DNNs. To address this issue, we develop a noise probabilistic model for learning the label noise based on the relationship between the input images, noisy labels, and true labels. The key idea of the probabilistic model is to directly explore the information from the input images and apply it to model the label noise. Then, a robust deep neural network (RDNN) is proposed to instantiate the noise probabilistic model, which consists of two important modules: the true label predictor (TLP) and the noise label estimator (NLE). Especially, the TLP is made of a DNN with softmax, which is used to learn the true label distribution. The NLE is applied to model the label noise distribution, which aims to absorb the label noise in the training process. Moreover, to tackle the challenges in the optimization, we deduce a loss function with the novel regularization, which allows the RDNN to conduct effective training on the noise data set. The effectiveness of the proposed method is validated by experiments on three road data sets that contain various resolutions and imaging conditions. The results demonstrate its superiority over state-of-the-art methods in visual performance and classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐为上完成签到,获得积分10
1秒前
猫小曼发布了新的文献求助30
2秒前
搜集达人应助彩w采纳,获得10
5秒前
明亮寒安完成签到,获得积分10
5秒前
踏实煎蛋完成签到,获得积分10
6秒前
传奇3应助额我认为采纳,获得10
7秒前
xxxgoldxsx完成签到,获得积分10
7秒前
8秒前
外向寄云应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得20
9秒前
不配.应助g0123采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
Raymond应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得20
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
36456657应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
Lyn应助科研通管家采纳,获得10
10秒前
杳鸢应助科研通管家采纳,获得20
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
11秒前
猫小曼完成签到,获得积分10
11秒前
狂野的冰棍完成签到,获得积分10
11秒前
史国志完成签到 ,获得积分10
12秒前
安an完成签到,获得积分10
12秒前
Japrin完成签到,获得积分10
13秒前
tuzhifengyin发布了新的文献求助10
13秒前
Sean完成签到,获得积分10
15秒前
15秒前
雁塔完成签到 ,获得积分10
15秒前
小蘑菇应助果粒红豆豆采纳,获得10
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242099
求助须知:如何正确求助?哪些是违规求助? 2886554
关于积分的说明 8243634
捐赠科研通 2555065
什么是DOI,文献DOI怎么找? 1383250
科研通“疑难数据库(出版商)”最低求助积分说明 649672
邀请新用户注册赠送积分活动 625463