Local and Global Structure-Aware Entropy Regularized Mean Teacher Model for 3D Left Atrium Segmentation

计算机科学 分割 人工智能 一致性(知识库) 熵(时间箭头) 匹配(统计) 模式识别(心理学) 数据挖掘 机器学习 数学 统计 物理 量子力学
作者
Wenlong Hang,Wei Feng,Shuang Liang,Lequan Yu,Qiong Wang,Kup‐Sze Choi,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 562-571 被引量:68
标识
DOI:10.1007/978-3-030-59710-8_55
摘要

Emerging self-ensembling methods have achieved promising semi-supervised segmentation performances on medical images through forcing consistent predictions of unannotated data under different perturbations. However, the consistency only penalizes on independent pixel-level predictions, making structure-level information of predictions not exploited in the learning procedure. In view of this, we propose a novel structure-aware entropy regularized mean teacher model to address the above limitation. Specifically, we firstly introduce the entropy minimization principle to the student network, thereby adjusting itself to produce high-confident predictions of unannotated images. Based on this, we design a local structural consistency loss to encourage the consistency of inter-voxel similarities within the same local region of predictions from teacher and student networks. To further capture local structural dependencies, we enforce the global structural consistency by matching the weighted self-information maps between two networks. In this way, our model can minimize the prediction uncertainty of unannotated images, and more importantly that it can capture local and global structural information and their complementarity. We evaluate the proposed method on a publicly available 3D left atrium MR image dataset. Experimental results demonstrate that our method achieves outstanding segmentation performances than the state-of-the-art approaches in scenes with limited annotated images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
呆头发布了新的文献求助10
3秒前
若水发布了新的文献求助200
4秒前
4秒前
5秒前
子川发布了新的文献求助10
5秒前
大头娃娃没下巴完成签到,获得积分10
7秒前
liyuchen完成签到,获得积分10
7秒前
CipherSage应助Lxxx_7采纳,获得10
8秒前
烟花应助永远少年采纳,获得10
8秒前
meng发布了新的文献求助10
10秒前
科研通AI5应助贪吃的猴子采纳,获得10
12秒前
12秒前
可爱的彩虹完成签到,获得积分10
12秒前
小确幸完成签到,获得积分10
12秒前
彭于晏应助毛毛虫采纳,获得10
13秒前
LilyChen完成签到 ,获得积分10
13秒前
Owen应助Su采纳,获得10
13秒前
13秒前
13秒前
14秒前
15秒前
yyyy关注了科研通微信公众号
15秒前
Jane完成签到 ,获得积分10
16秒前
16秒前
16秒前
kento发布了新的文献求助30
16秒前
Akim应助balzacsun采纳,获得10
17秒前
狼来了aas发布了新的文献求助10
17秒前
18秒前
didi完成签到,获得积分10
18秒前
嘻嘻发布了新的文献求助10
20秒前
冲冲冲完成签到 ,获得积分10
20秒前
20秒前
21秒前
21秒前
21秒前
21秒前
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824