路易斯酸
沮丧的刘易斯对
催化作用
多相催化
亚胺
化学
多孔性
金属有机骨架
组合化学
材料科学
化学工程
有机化学
吸附
工程类
作者
Qinghao Meng,Yihan Huang,Dan Deng,Yajie Yang,Haoyan Sha,Xiaoqin Zou,Roland Faller,Ye Yuan,Guangshan Zhu
标识
DOI:10.1002/advs.202000067
摘要
Abstract Lewis pairs (LPs) with outstanding performance for nonmetal‐mediated catalysis reactions have high fundamental interest and remarkable application prospects. However, their solubility characteristics lead to instability and deactivation upon recycling. Here, the layered porous aromatic framework (PAF‐6), featuring two kinds of Lewis base sites (N Piperazine and N Triazine ), is exfoliated into few‐layer nanosheets to form the LP entity with the Lewis acid. After comparison with various porous networks and verification by density functional theory (DFT) calculations, the N Triazine atom in the specific spatial environment is determined to preferably coordinate with the electron‐deficient boron compound in a sterically hindered pattern. LP‐bare porous product displays high catalytic activity for the hydrogenation of both olefin and imine compounds, and demonstrates ≈100% activity after 10 successful cycles in hydrogenation reactions. Considering the natural advantage of porous organic frameworks to construct LP groups opens up novel prospects for preparing other nonmetallic heterogeneous catalysts for efficient and recyclable catalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI