Neuroimaging features of whole‐brain functional connectivity predict attack frequency of migraine

神经影像学 队列 偏头痛 逻辑回归 神经功能成像 慢性偏头痛 优势比 医学 心理学 默认模式网络 功能磁共振成像 神经科学 精神科 内科学
作者
Junya Mu,Tao Chen,Shilan Quan,Chen Wang,Ling Zhao,Jixin Liu
出处
期刊:Human Brain Mapping [Wiley]
卷期号:41 (4): 984-993 被引量:14
标识
DOI:10.1002/hbm.24854
摘要

Migraine is a chronic neurological disorder characterized by attacks of moderate or severe headache accompanying functionally and structurally maladaptive changes in brain. As the headache days/month is often measured by patient self-report and tends to be overestimated than actually experienced, the possibility of using neuroimaging data to predict migraine attack frequency is of great interest. To identify neuroimaging features that could objectively evaluate patients' headache days, a total of 179 migraineurs were recruited from two data center with one dataset used as the training/test cohort and the other used as the validating cohort. The guidelines for controlled trials of prophylactic treatment of chronic migraine in adults were used to identify the frequency of attacks and migraineurs were divided into low (MOl) and high (MOh) subgroups. Whole-brain functional connectivity was used to build multivariate logistic regression models with model iteration optimization to identify MOl and MOh. The best model accurately discriminated MOh from MOl with AUC of 0.91 (95%CI [0.86, 0.95]) in the training/test cohort and 0.79 in the validating cohort. The discriminative features were mainly located within the limbic lobe, frontal lobe, and temporal lobe. Permutation tests analysis demonstrated that the classification performance of these features was significantly better than chance. Furthermore, the indicator of functional connectivity had a higher odds ratio than behavioral variables with implementing a holistic regression analysis. The current findings suggested that the migraine attack frequency could be distinguished by using machine-learning algorithms, and highlighted the role of brain functional connectivity in revealing underlying migraine-related neurobiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
刚刚
劲秉应助科研通管家采纳,获得10
刚刚
枫叶应助科研通管家采纳,获得10
刚刚
12334应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
hello发布了新的文献求助10
1秒前
javalin完成签到,获得积分10
2秒前
2秒前
满意修洁完成签到,获得积分10
2秒前
徐丹发布了新的文献求助10
3秒前
小二郎应助沙不凡采纳,获得10
3秒前
3秒前
4秒前
4秒前
慕青应助狗儿吖采纳,获得10
4秒前
5秒前
英姑应助执着的忆雪采纳,获得10
5秒前
6秒前
6秒前
满意修洁发布了新的文献求助10
6秒前
hotmoneysniper完成签到,获得积分10
7秒前
8秒前
科研通AI2S应助无语的怜梦采纳,获得10
8秒前
9秒前
9秒前
顾矜应助Cynthia采纳,获得10
10秒前
共享精神应助小喻采纳,获得10
11秒前
怎么可能会凉完成签到 ,获得积分10
11秒前
花花发布了新的文献求助20
11秒前
义气凡霜发布了新的文献求助10
11秒前
Lucas应助原子采纳,获得10
11秒前
11秒前
mera完成签到,获得积分10
12秒前
pluto应助云云采纳,获得30
12秒前
13秒前
14秒前
王SQ完成签到,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663