Data Augmentation and Dense-LSTM for Human Activity Recognition Using WiFi Signal

过度拟合 计算机科学 活动识别 稳健性(进化) 机器学习 信道状态信息 无线 人工智能 数据建模 频道(广播) 模式识别(心理学) 语音识别 人工神经网络 电信 基因 数据库 生物化学 化学
作者
Jin Zhang,Fuxiang Wu,Bo Wei,Qieshi Zhang,Hui Huang,Syed Wajid Ali Shah,Jun Cheng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (6): 4628-4641 被引量:103
标识
DOI:10.1109/jiot.2020.3026732
摘要

Recent research has devoted significant efforts on the utilization of WiFi signals to recognize various human activities. An individual's limb motions in the WiFi coverage area could interfere with wireless signal propagation, that manifested as unique patterns for activity recognition. Existing approaches though yielding reasonable performance in certain cases, are ignorant of two major challenges. The performed activities of the individual normally have inconsistent speed in different situations and time. Besides that the wireless signal reflected by human bodies normally carries substantial information that is specific to that subject. The activity recognition model trained on a certain individual may not work well when being applied to predict another individual's activities. Since only recording activities of limited subjects in a certain speed and scale, recent works commonly have a moderate amount of activity data for training the recognition model. The small-size data could often incur the overfitting issue that negative affect the traditional classification model. To address these challenges, we propose a WiFi-based human activity recognition system that synthesizes variant activities data through eight channel state information (CSI) transformation methods to mitigate the impact of activity inconsistency and subject-specific issues, and also design a novel deep-learning model that caters to the small-size WiFi activity data. We conduct extensive experiments and show synthetic data improve performance by up to 34.6% and our system achieves around 90% of accuracy with well robustness in adapting to small-size CSI data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助滴滴答答采纳,获得10
1秒前
1秒前
MaSaR完成签到,获得积分10
2秒前
笨笨以莲发布了新的文献求助10
2秒前
honey发布了新的文献求助10
2秒前
chili发布了新的文献求助10
2秒前
Nano发布了新的文献求助10
3秒前
神勇灵竹完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
汉堡包应助SarahChen采纳,获得10
8秒前
8秒前
小马哥发布了新的文献求助10
9秒前
9秒前
WEAWEA发布了新的文献求助10
9秒前
bxdrl完成签到,获得积分20
9秒前
roosterpan发布了新的文献求助10
9秒前
9秒前
南兮完成签到,获得积分10
9秒前
好好完成签到,获得积分20
9秒前
黑化小狗完成签到,获得积分10
10秒前
10秒前
ETJ完成签到,获得积分10
10秒前
朱朱朱完成签到,获得积分10
11秒前
Hello应助陶醉凝丝采纳,获得10
11秒前
11发布了新的文献求助10
11秒前
shyunk发布了新的文献求助10
11秒前
黑化小狗发布了新的文献求助10
12秒前
神勇灵竹发布了新的文献求助20
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
chili完成签到,获得积分20
13秒前
13秒前
慕慕倾完成签到,获得积分10
14秒前
丰富的小猫咪完成签到,获得积分10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233