Data Augmentation and Dense-LSTM for Human Activity Recognition Using WiFi Signal

过度拟合 计算机科学 活动识别 稳健性(进化) 机器学习 信道状态信息 无线 人工智能 数据建模 频道(广播) 模式识别(心理学) 语音识别 人工神经网络 电信 基因 数据库 生物化学 化学
作者
Jin Zhang,Fuxiang Wu,Bo Wei,Qieshi Zhang,Hui Huang,Syed Wajid Ali Shah,Jun Cheng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (6): 4628-4641 被引量:103
标识
DOI:10.1109/jiot.2020.3026732
摘要

Recent research has devoted significant efforts on the utilization of WiFi signals to recognize various human activities. An individual's limb motions in the WiFi coverage area could interfere with wireless signal propagation, that manifested as unique patterns for activity recognition. Existing approaches though yielding reasonable performance in certain cases, are ignorant of two major challenges. The performed activities of the individual normally have inconsistent speed in different situations and time. Besides that the wireless signal reflected by human bodies normally carries substantial information that is specific to that subject. The activity recognition model trained on a certain individual may not work well when being applied to predict another individual's activities. Since only recording activities of limited subjects in a certain speed and scale, recent works commonly have a moderate amount of activity data for training the recognition model. The small-size data could often incur the overfitting issue that negative affect the traditional classification model. To address these challenges, we propose a WiFi-based human activity recognition system that synthesizes variant activities data through eight channel state information (CSI) transformation methods to mitigate the impact of activity inconsistency and subject-specific issues, and also design a novel deep-learning model that caters to the small-size WiFi activity data. We conduct extensive experiments and show synthetic data improve performance by up to 34.6% and our system achieves around 90% of accuracy with well robustness in adapting to small-size CSI data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈陈陈发布了新的文献求助10
1秒前
1秒前
子舟发布了新的文献求助10
1秒前
上官若男应助yetao采纳,获得10
2秒前
小贝发布了新的文献求助10
2秒前
飞阳完成签到,获得积分10
2秒前
上官若男应助LQQ采纳,获得10
3秒前
hhl发布了新的文献求助10
3秒前
3秒前
3秒前
黄则已发布了新的文献求助10
3秒前
4秒前
Laputa发布了新的文献求助10
4秒前
小何发布了新的文献求助10
4秒前
5秒前
5秒前
小蘑菇应助细心健柏采纳,获得10
5秒前
6秒前
Linda完成签到 ,获得积分10
6秒前
zzz发布了新的文献求助10
6秒前
xianyu完成签到,获得积分0
7秒前
7秒前
大龙哥886应助科研Cat采纳,获得10
7秒前
8秒前
斯文败类应助Te采纳,获得10
8秒前
王枫发布了新的文献求助10
8秒前
苹果涵蕾完成签到,获得积分10
8秒前
科研通AI6应助田小班采纳,获得10
8秒前
吴静慧完成签到 ,获得积分10
9秒前
9秒前
蒋若风发布了新的文献求助10
10秒前
buno应助张益发采纳,获得10
10秒前
11秒前
LQQ发布了新的文献求助10
11秒前
轻歌水越发布了新的文献求助10
11秒前
11秒前
Owen应助怕孤独的迎梦采纳,获得10
11秒前
霖尤发布了新的文献求助20
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836