亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data Augmentation and Dense-LSTM for Human Activity Recognition Using WiFi Signal

过度拟合 计算机科学 活动识别 稳健性(进化) 机器学习 信道状态信息 无线 人工智能 数据建模 频道(广播) 模式识别(心理学) 语音识别 人工神经网络 电信 基因 数据库 生物化学 化学
作者
Jin Zhang,Fuxiang Wu,Bo Wei,Qieshi Zhang,Hui Huang,Syed Wajid Ali Shah,Jun Cheng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (6): 4628-4641 被引量:103
标识
DOI:10.1109/jiot.2020.3026732
摘要

Recent research has devoted significant efforts on the utilization of WiFi signals to recognize various human activities. An individual's limb motions in the WiFi coverage area could interfere with wireless signal propagation, that manifested as unique patterns for activity recognition. Existing approaches though yielding reasonable performance in certain cases, are ignorant of two major challenges. The performed activities of the individual normally have inconsistent speed in different situations and time. Besides that the wireless signal reflected by human bodies normally carries substantial information that is specific to that subject. The activity recognition model trained on a certain individual may not work well when being applied to predict another individual's activities. Since only recording activities of limited subjects in a certain speed and scale, recent works commonly have a moderate amount of activity data for training the recognition model. The small-size data could often incur the overfitting issue that negative affect the traditional classification model. To address these challenges, we propose a WiFi-based human activity recognition system that synthesizes variant activities data through eight channel state information (CSI) transformation methods to mitigate the impact of activity inconsistency and subject-specific issues, and also design a novel deep-learning model that caters to the small-size WiFi activity data. We conduct extensive experiments and show synthetic data improve performance by up to 34.6% and our system achieves around 90% of accuracy with well robustness in adapting to small-size CSI data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
曲线发布了新的文献求助10
11秒前
缓慢逍遥完成签到 ,获得积分10
15秒前
赘婿应助Ade107采纳,获得10
15秒前
科研启动发布了新的文献求助10
18秒前
25秒前
lele发布了新的文献求助10
29秒前
曲线完成签到,获得积分10
44秒前
科研通AI6应助zhdhh采纳,获得10
49秒前
无奈的靖仇完成签到,获得积分10
51秒前
53秒前
1分钟前
呼延水云发布了新的文献求助10
1分钟前
要减肥的胖子应助周周采纳,获得10
1分钟前
1分钟前
科研通AI6应助George采纳,获得10
1分钟前
斯文败类应助Aurora采纳,获得10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
2分钟前
Ade107发布了新的文献求助10
2分钟前
2分钟前
宓广缘完成签到 ,获得积分10
2分钟前
应寒年完成签到 ,获得积分10
2分钟前
Ava应助靓丽的珊珊采纳,获得10
2分钟前
2分钟前
2分钟前
carols发布了新的文献求助10
2分钟前
小马甲应助Ade107采纳,获得10
2分钟前
Thi发布了新的文献求助10
2分钟前
靓丽衫完成签到 ,获得积分10
2分钟前
qiuzhiri完成签到,获得积分10
2分钟前
小二郎应助George采纳,获得10
2分钟前
2分钟前
2分钟前
在水一方应助qiuzhiri采纳,获得10
2分钟前
Nightfall发布了新的文献求助10
2分钟前
善学以致用应助LALA采纳,获得10
2分钟前
包容远山完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639537
求助须知:如何正确求助?哪些是违规求助? 4748939
关于积分的说明 15006656
捐赠科研通 4797713
什么是DOI,文献DOI怎么找? 2563741
邀请新用户注册赠送积分活动 1522710
关于科研通互助平台的介绍 1482425