Data Augmentation and Dense-LSTM for Human Activity Recognition Using WiFi Signal

过度拟合 计算机科学 活动识别 稳健性(进化) 机器学习 信道状态信息 无线 人工智能 数据建模 频道(广播) 模式识别(心理学) 语音识别 人工神经网络 电信 基因 数据库 生物化学 化学
作者
Jin Zhang,Fuxiang Wu,Bo Wei,Qieshi Zhang,Hui Huang,Syed Wajid Ali Shah,Jun Cheng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (6): 4628-4641 被引量:103
标识
DOI:10.1109/jiot.2020.3026732
摘要

Recent research has devoted significant efforts on the utilization of WiFi signals to recognize various human activities. An individual's limb motions in the WiFi coverage area could interfere with wireless signal propagation, that manifested as unique patterns for activity recognition. Existing approaches though yielding reasonable performance in certain cases, are ignorant of two major challenges. The performed activities of the individual normally have inconsistent speed in different situations and time. Besides that the wireless signal reflected by human bodies normally carries substantial information that is specific to that subject. The activity recognition model trained on a certain individual may not work well when being applied to predict another individual's activities. Since only recording activities of limited subjects in a certain speed and scale, recent works commonly have a moderate amount of activity data for training the recognition model. The small-size data could often incur the overfitting issue that negative affect the traditional classification model. To address these challenges, we propose a WiFi-based human activity recognition system that synthesizes variant activities data through eight channel state information (CSI) transformation methods to mitigate the impact of activity inconsistency and subject-specific issues, and also design a novel deep-learning model that caters to the small-size WiFi activity data. We conduct extensive experiments and show synthetic data improve performance by up to 34.6% and our system achieves around 90% of accuracy with well robustness in adapting to small-size CSI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
polarisier发布了新的文献求助10
2秒前
3秒前
4秒前
慕青应助dxm采纳,获得10
4秒前
Cyber_relic完成签到,获得积分10
5秒前
ding完成签到,获得积分10
5秒前
5秒前
6秒前
酷波er应助coast采纳,获得10
7秒前
7秒前
文文发布了新的文献求助10
9秒前
南门完成签到,获得积分10
9秒前
温以凡发布了新的文献求助10
9秒前
科研通AI6应助机灵铭采纳,获得10
9秒前
文静的炳发布了新的文献求助10
9秒前
10秒前
熊小兰发布了新的文献求助10
10秒前
djbj2022完成签到,获得积分10
10秒前
慕青应助hhh采纳,获得10
11秒前
韩立发布了新的文献求助10
11秒前
11秒前
chili完成签到,获得积分10
12秒前
忐忑的丝完成签到,获得积分10
13秒前
刘刘佳发布了新的文献求助10
15秒前
15秒前
17秒前
djbj2022发布了新的文献求助10
17秒前
fengfeng发布了新的文献求助10
18秒前
19秒前
19秒前
薛微有点甜完成签到,获得积分10
20秒前
orixero应助韩立采纳,获得10
21秒前
美满的尔珍完成签到,获得积分10
22秒前
sekiro发布了新的文献求助10
22秒前
鬼无二心发布了新的文献求助10
22秒前
烟花应助fengfeng采纳,获得10
24秒前
25秒前
哈哈哈哈哈完成签到 ,获得积分10
25秒前
镜哥完成签到,获得积分10
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930