Data Augmentation and Dense-LSTM for Human Activity Recognition Using WiFi Signal

过度拟合 计算机科学 活动识别 稳健性(进化) 机器学习 信道状态信息 无线 人工智能 数据建模 频道(广播) 模式识别(心理学) 语音识别 人工神经网络 电信 基因 数据库 生物化学 化学
作者
Jin Zhang,Fuxiang Wu,Bo Wei,Qieshi Zhang,Hui Huang,Syed Wajid Ali Shah,Jun Cheng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (6): 4628-4641 被引量:103
标识
DOI:10.1109/jiot.2020.3026732
摘要

Recent research has devoted significant efforts on the utilization of WiFi signals to recognize various human activities. An individual's limb motions in the WiFi coverage area could interfere with wireless signal propagation, that manifested as unique patterns for activity recognition. Existing approaches though yielding reasonable performance in certain cases, are ignorant of two major challenges. The performed activities of the individual normally have inconsistent speed in different situations and time. Besides that the wireless signal reflected by human bodies normally carries substantial information that is specific to that subject. The activity recognition model trained on a certain individual may not work well when being applied to predict another individual's activities. Since only recording activities of limited subjects in a certain speed and scale, recent works commonly have a moderate amount of activity data for training the recognition model. The small-size data could often incur the overfitting issue that negative affect the traditional classification model. To address these challenges, we propose a WiFi-based human activity recognition system that synthesizes variant activities data through eight channel state information (CSI) transformation methods to mitigate the impact of activity inconsistency and subject-specific issues, and also design a novel deep-learning model that caters to the small-size WiFi activity data. We conduct extensive experiments and show synthetic data improve performance by up to 34.6% and our system achieves around 90% of accuracy with well robustness in adapting to small-size CSI data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏蓉完成签到,获得积分10
1秒前
howard发布了新的文献求助10
2秒前
情怀应助明亮的幻竹采纳,获得10
2秒前
2秒前
晓凡发布了新的文献求助10
3秒前
任我行发布了新的文献求助10
3秒前
潘广瑞完成签到,获得积分10
4秒前
4秒前
科研修沟发布了新的文献求助10
5秒前
故事的小黄花完成签到,获得积分10
7秒前
领导范儿应助Tperm采纳,获得20
7秒前
huntme完成签到,获得积分10
8秒前
TATA发布了新的文献求助10
8秒前
9秒前
自由滑大王完成签到 ,获得积分10
11秒前
CodeCraft应助彩色的夏青采纳,获得10
11秒前
李洁完成签到,获得积分10
13秒前
CodeCraft应助王晓茜采纳,获得10
15秒前
15秒前
15秒前
fang完成签到,获得积分10
15秒前
Orange应助俭朴的一曲采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
香蕉觅云应助小马采纳,获得10
20秒前
20秒前
英俊的铭应助瀅瀅采纳,获得10
20秒前
20秒前
Jasper应助海潮飞翔采纳,获得10
21秒前
21秒前
...完成签到,获得积分10
21秒前
ZeKaWa应助堡主采纳,获得10
21秒前
Hide杰完成签到,获得积分10
22秒前
22秒前
妮妮发布了新的文献求助10
23秒前
23秒前
bob完成签到,获得积分10
24秒前
24秒前
小6发布了新的文献求助10
24秒前
orixero应助坚定剑成采纳,获得10
25秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620667
求助须知:如何正确求助?哪些是违规求助? 4705247
关于积分的说明 14930934
捐赠科研通 4762530
什么是DOI,文献DOI怎么找? 2551078
邀请新用户注册赠送积分活动 1513735
关于科研通互助平台的介绍 1474655