Data Augmentation and Dense-LSTM for Human Activity Recognition Using WiFi Signal

过度拟合 计算机科学 活动识别 稳健性(进化) 机器学习 信道状态信息 无线 人工智能 数据建模 频道(广播) 模式识别(心理学) 语音识别 人工神经网络 电信 基因 数据库 生物化学 化学
作者
Jin Zhang,Fuxiang Wu,Bo Wei,Qieshi Zhang,Hui Huang,Syed Wajid Ali Shah,Jun Cheng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (6): 4628-4641 被引量:103
标识
DOI:10.1109/jiot.2020.3026732
摘要

Recent research has devoted significant efforts on the utilization of WiFi signals to recognize various human activities. An individual's limb motions in the WiFi coverage area could interfere with wireless signal propagation, that manifested as unique patterns for activity recognition. Existing approaches though yielding reasonable performance in certain cases, are ignorant of two major challenges. The performed activities of the individual normally have inconsistent speed in different situations and time. Besides that the wireless signal reflected by human bodies normally carries substantial information that is specific to that subject. The activity recognition model trained on a certain individual may not work well when being applied to predict another individual's activities. Since only recording activities of limited subjects in a certain speed and scale, recent works commonly have a moderate amount of activity data for training the recognition model. The small-size data could often incur the overfitting issue that negative affect the traditional classification model. To address these challenges, we propose a WiFi-based human activity recognition system that synthesizes variant activities data through eight channel state information (CSI) transformation methods to mitigate the impact of activity inconsistency and subject-specific issues, and also design a novel deep-learning model that caters to the small-size WiFi activity data. We conduct extensive experiments and show synthetic data improve performance by up to 34.6% and our system achieves around 90% of accuracy with well robustness in adapting to small-size CSI data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiao发布了新的文献求助10
刚刚
天真豪英完成签到 ,获得积分10
刚刚
小王完成签到,获得积分10
刚刚
刚刚
1秒前
天天快乐应助Always采纳,获得10
1秒前
1秒前
汉堡包应助铃兰采纳,获得10
2秒前
凝凝小发布了新的文献求助10
2秒前
新晋牛马发布了新的文献求助10
2秒前
2秒前
922完成签到,获得积分10
2秒前
LL完成签到,获得积分10
2秒前
3秒前
费飞扬发布了新的文献求助10
4秒前
xxzztt完成签到,获得积分10
4秒前
4秒前
4秒前
link咩完成签到,获得积分10
4秒前
5秒前
伍六柒完成签到,获得积分20
5秒前
mm发布了新的文献求助10
6秒前
6秒前
小白完成签到,获得积分10
6秒前
杨德帅发布了新的文献求助10
6秒前
樱桃完成签到,获得积分10
6秒前
熠熠完成签到,获得积分10
6秒前
小茜完成签到 ,获得积分10
6秒前
6秒前
热热发布了新的文献求助10
7秒前
asdfzxcv应助61Cu采纳,获得10
7秒前
宴究生完成签到,获得积分10
8秒前
Ping完成签到,获得积分10
8秒前
克莱完成签到,获得积分10
8秒前
my196755发布了新的文献求助10
8秒前
Ava应助922采纳,获得10
9秒前
SIC完成签到,获得积分10
9秒前
狐狸小姐完成签到,获得积分10
10秒前
whf发布了新的文献求助30
10秒前
丁晓彤发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646235
求助须知:如何正确求助?哪些是违规求助? 4770584
关于积分的说明 15033924
捐赠科研通 4804968
什么是DOI,文献DOI怎么找? 2569335
邀请新用户注册赠送积分活动 1526419
关于科研通互助平台的介绍 1485810