Data Augmentation and Dense-LSTM for Human Activity Recognition Using WiFi Signal

过度拟合 计算机科学 活动识别 稳健性(进化) 机器学习 信道状态信息 无线 人工智能 数据建模 频道(广播) 模式识别(心理学) 语音识别 人工神经网络 电信 基因 数据库 生物化学 化学
作者
Jin Zhang,Fuxiang Wu,Bo Wei,Qieshi Zhang,Hui Huang,Syed Wajid Ali Shah,Jun Cheng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (6): 4628-4641 被引量:103
标识
DOI:10.1109/jiot.2020.3026732
摘要

Recent research has devoted significant efforts on the utilization of WiFi signals to recognize various human activities. An individual's limb motions in the WiFi coverage area could interfere with wireless signal propagation, that manifested as unique patterns for activity recognition. Existing approaches though yielding reasonable performance in certain cases, are ignorant of two major challenges. The performed activities of the individual normally have inconsistent speed in different situations and time. Besides that the wireless signal reflected by human bodies normally carries substantial information that is specific to that subject. The activity recognition model trained on a certain individual may not work well when being applied to predict another individual's activities. Since only recording activities of limited subjects in a certain speed and scale, recent works commonly have a moderate amount of activity data for training the recognition model. The small-size data could often incur the overfitting issue that negative affect the traditional classification model. To address these challenges, we propose a WiFi-based human activity recognition system that synthesizes variant activities data through eight channel state information (CSI) transformation methods to mitigate the impact of activity inconsistency and subject-specific issues, and also design a novel deep-learning model that caters to the small-size WiFi activity data. We conduct extensive experiments and show synthetic data improve performance by up to 34.6% and our system achieves around 90% of accuracy with well robustness in adapting to small-size CSI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助兜兜采纳,获得10
刚刚
zxy发布了新的文献求助10
1秒前
11完成签到,获得积分10
1秒前
学木完成签到,获得积分20
2秒前
KETU发布了新的文献求助10
3秒前
3秒前
4秒前
奥利奥完成签到 ,获得积分10
5秒前
5秒前
丘比特应助自由访烟采纳,获得10
6秒前
英姑应助江江采纳,获得10
6秒前
8秒前
breaking完成签到,获得积分10
8秒前
包容雨雪发布了新的文献求助20
8秒前
自觉绿柏发布了新的文献求助10
9秒前
充电宝应助无私的以冬采纳,获得10
9秒前
赘婿应助suka采纳,获得10
10秒前
小舟潮完成签到,获得积分10
10秒前
深情安青应助songsong丿采纳,获得10
10秒前
Charail发布了新的文献求助10
11秒前
ABS发布了新的文献求助10
11秒前
12秒前
kmmu0611完成签到 ,获得积分10
12秒前
李健应助酷炫灵安采纳,获得10
14秒前
14秒前
77完成签到,获得积分10
15秒前
小猪皮发布了新的文献求助200
16秒前
17秒前
17秒前
小奶球发布了新的文献求助10
17秒前
CipherSage应助不会卡的hi采纳,获得10
17秒前
江江发布了新的文献求助10
18秒前
我是你奶发布了新的文献求助10
18秒前
云瑾应助夏姬宁静采纳,获得20
19秒前
semigreen发布了新的文献求助10
20秒前
时冬冬应助kmmu0611采纳,获得20
20秒前
21秒前
老板别打烊完成签到,获得积分10
21秒前
包容雨雪完成签到,获得积分10
22秒前
22秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157832
求助须知:如何正确求助?哪些是违规求助? 2809154
关于积分的说明 7880665
捐赠科研通 2467655
什么是DOI,文献DOI怎么找? 1313641
科研通“疑难数据库(出版商)”最低求助积分说明 630467
版权声明 601943