Boosting Resolution and Recovering Texture of 2D and 3D Micro‐CT Images with Deep Learning

人工智能 计算机科学 计算机视觉 双三次插值 卷积神经网络 帧速率 图像质量 模式识别(心理学) 图像(数学) 线性插值
作者
Ying Da Wang,Ryan T. Armstrong,Peyman Mostaghimi
出处
期刊:Water Resources Research [Wiley]
卷期号:56 (1) 被引量:84
标识
DOI:10.1029/2019wr026052
摘要

Digital Rock Imaging is constrained by detector hardware, and a trade-off between the image field of view (FOV) and the image resolution must be made. This can be compensated for with super resolution (SR) techniques that take a wide FOV, low resolution (LR) image, and super resolve a high resolution (HR), high FOV image. The Enhanced Deep Super Resolution Generative Adversarial Network (EDSRGAN) is trained on the Deep Learning Digital Rock Super Resolution Dataset, a diverse compilation 12000 of raw and processed uCT images. The network shows comparable performance of 50% to 70% reduction in relative error over bicubic interpolation. GAN performance in recovering texture shows superior visual similarity compared to SRCNN and other methods. Difference maps indicate that the SRCNN section of the SRGAN network recovers large scale edge (grain boundaries) features while the GAN network regenerates perceptually indistinguishable high frequency texture. Network performance is generalised with augmentation, showing high adaptability to noise and blur. HR images are fed into the network, generating HR-SR images to extrapolate network performance to sub-resolution features present in the HR images themselves. Results show that under-resolution features such as dissolved minerals and thin fractures are regenerated despite the network operating outside of trained specifications. Comparison with Scanning Electron Microscope images shows details are consistent with the underlying geometry of the sample. Recovery of textures benefits the characterisation of digital rocks with a high proportion of under-resolution micro-porous features, such as carbonate and coal samples. Images that are normally constrained by the mineralogy of the rock (coal), by fast transient imaging (waterflooding), or by the energy of the source (microporosity), can be super resolved accurately for further analysis downstream.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyh发布了新的文献求助10
1秒前
激情的水壶完成签到,获得积分10
5秒前
昕蓉完成签到,获得积分10
8秒前
14秒前
听话的蜡烛完成签到,获得积分10
15秒前
SAKing发布了新的文献求助10
18秒前
123发布了新的文献求助10
18秒前
橘橘橘子皮完成签到 ,获得积分10
20秒前
yuyuyu完成签到,获得积分10
20秒前
田様应助凯凯采纳,获得10
21秒前
25秒前
26秒前
是琳不是林完成签到,获得积分10
26秒前
RKK发布了新的文献求助10
27秒前
Longy完成签到,获得积分10
28秒前
Longy发布了新的文献求助10
31秒前
想飞的猪发布了新的文献求助10
32秒前
33秒前
渔舟唱晚应助缓慢的衫采纳,获得10
33秒前
34秒前
汉堡包应助sci帝国采纳,获得10
37秒前
凯凯发布了新的文献求助10
38秒前
司徒呀完成签到 ,获得积分10
39秒前
Pupoo发布了新的文献求助10
39秒前
40秒前
雪白的雪发布了新的文献求助10
40秒前
43秒前
44秒前
wke发布了新的文献求助10
45秒前
46秒前
洁净的士晋完成签到,获得积分10
47秒前
sci帝国发布了新的文献求助10
50秒前
Henry应助凯凯采纳,获得10
50秒前
科研通AI2S应助吞吞采纳,获得10
54秒前
55秒前
sci帝国完成签到,获得积分10
58秒前
小丑鱼发布了新的文献求助10
1分钟前
虚心的秋秋完成签到,获得积分10
1分钟前
VDC应助科研通管家采纳,获得30
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Restraining Hand: Captivity for Christ in China 500
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376380
求助须知:如何正确求助?哪些是违规求助? 2992511
关于积分的说明 8751096
捐赠科研通 2676850
什么是DOI,文献DOI怎么找? 1466249
科研通“疑难数据库(出版商)”最低求助积分说明 678240
邀请新用户注册赠送积分活动 669843