Radiomic analysis on magnetic resonance diffusion weighted image in distinguishing triple-negative breast cancer from other subtypes: a feasibility study

医学 接收机工作特性 三阴性乳腺癌 磁共振成像 曼惠特尼U检验 乳腺癌 逻辑回归 线性判别分析 精确检验 有效扩散系数 曲线下面积 乳房磁振造影 核医学 放射科 磁共振弥散成像 内科学 癌症 乳腺摄影术 人工智能 计算机科学
作者
Qinglin Wang,Ning Mao,Meijie Liu,Ying‐Hong Shi,Heng Ma,Jianjun Dong,Xuexi Zhang,Shaofeng Duan,Wang Bin,Haizhu Xie
出处
期刊:Clinical Imaging [Elsevier]
卷期号:72: 136-141 被引量:17
标识
DOI:10.1016/j.clinimag.2020.11.024
摘要

Abstract

Purpose

This work aimed to explore whether radiomic features on magnetic resonance diffusion weighted image (MR DWI) can be used to identify triple-negative breast cancer (TNBC) and other subtypes (non-TNBC).

Materials and methods

This retrospective study included 221 unilateral patients who underwent breast MR imaging prior to neoadjuvant chemotherapy. The subtypes of breast cancer include luminal A (n = 63), luminal B (n = 103), human epidermal growth factor receptor-2 (HER2) overexpressing (n = 30), and triple negative (n = 25). Radiomic features were extracted using Omini-Kinetic software on DWI. Student's t-test and Mann–Whitney U test were used to compare the features between TNBC and non-TNBC patients. Logistic regression analysis and receiver operating characteristic (ROC) curve were used to evaluate the diagnostic efficiency of radiomic features. The Fisher discriminant model was employed to distinguish TNBC and non-TNBC patients automatically. An additional validation dataset with 169 patients was utilized to validate the model.

Results

A total of 76 imaging features were extracted from each lesion on DWI images, and 12 radiomic features were statistically significant between TNBC and non-TNBC patients (P < 0.05). The area of receiver operating characteristic curve (AUC) was 0.817 to apply logistic regression analysis. The accuracy of Fisher discriminant model in distinguishing TNBC and non-TNBC patients was 95.4%, and leave-one-out cross validation was achieved with an accuracy of 83.7%. The same classification analysis of the validation dataset showed an accuracy of 83.4% and an AUC of 0.804.

Conclusion

Breast lesions exhibit differences in radiomic features from DWI, enabling good discrimination between TNBC and non-TNBC tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子李发布了新的文献求助20
1秒前
3秒前
丘比特应助hong采纳,获得10
3秒前
4秒前
小蘑菇应助忍忍采纳,获得10
4秒前
糊糊发布了新的文献求助10
4秒前
5秒前
温灿完成签到,获得积分10
6秒前
在水一方应助你好采纳,获得10
6秒前
上官若男应助qiu采纳,获得10
7秒前
7秒前
7秒前
8秒前
建成发布了新的文献求助10
8秒前
9秒前
秦春歌发布了新的文献求助10
9秒前
Tree_完成签到 ,获得积分10
10秒前
达俐融完成签到,获得积分20
10秒前
温灿发布了新的文献求助10
11秒前
11秒前
11秒前
hyx完成签到 ,获得积分10
11秒前
wanci应助Ahha采纳,获得10
12秒前
xuex1发布了新的文献求助10
12秒前
本特利发布了新的文献求助10
13秒前
zhanghaha发布了新的文献求助10
13秒前
小二郎应助达俐融采纳,获得10
14秒前
Jennifer发布了新的文献求助10
14秒前
sci发布了新的文献求助10
14秒前
Ava应助白水晶采纳,获得10
14秒前
23533213关注了科研通微信公众号
15秒前
zzt37927发布了新的文献求助10
16秒前
18秒前
18秒前
18秒前
19秒前
胡须完成签到,获得积分10
19秒前
sci完成签到,获得积分10
20秒前
胡须发布了新的文献求助10
21秒前
忍忍发布了新的文献求助10
21秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142067
求助须知:如何正确求助?哪些是违规求助? 2793006
关于积分的说明 7805015
捐赠科研通 2449359
什么是DOI,文献DOI怎么找? 1303185
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291