深度学习
人工智能
机器学习
药物发现
计算机科学
抗癌药
精密医学
鉴定(生物学)
药品
数据科学
生物信息学
医学
药理学
生物
病理
植物
作者
Tan Xian,Yang Yu,Kaiwen Duan,Jingbo Zhang,Pingping Sun,Hui Sun
标识
DOI:10.2174/1568026620666200710101307
摘要
Anticancer drug screening can accelerate drug discovery to save the lives of cancer patients, but cancer heterogeneity makes this screening challenging. The prediction of anticancer drug sensitivity is useful for anticancer drug development and the identification of biomarkers of drug sensitivity. Deep learning, as a branch of machine learning, is an important aspect of in silico research. Its outstanding computational performance means that it has been used for many biomedical purposes, such as medical image interpretation, biological sequence analysis, and drug discovery. Several studies have predicted anticancer drug sensitivity based on deep learning algorithms. The field of deep learning has made progress regarding model performance and multi-omics data integration. However, deep learning is limited by the number of studies performed and data sources available, so it is not perfect as a pre-clinical approach for use in the anticancer drug screening process. Improving the performance of deep learning models is a pressing issue for researchers. In this review, we introduce the research of anticancer drug sensitivity prediction and the use of deep learning in this research area. To provide a reference for future research, we also review some common data sources and machine learning methods. Lastly, we discuss the advantages and disadvantages of deep learning, as well as the limitations and future perspectives regarding this approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI