Biomimetic 3D bacterial cellulose-graphene foam hybrid scaffold regulates neural stem cell proliferation and differentiation

脚手架 细菌纤维素 神经组织工程 神经干细胞 组织工程 生物相容性 再生医学 细胞生物学 材料科学 干细胞 纳米技术 再生(生物学) 纤维素 化学 生物 生物医学工程 生物化学 医学 遗传学 冶金
作者
Rongrong Guo,Jian Li,Chuntao Chen,Miao Xiao,Menghui Liao,Yangnan Hu,Yun Liu,Dan Li,Jun Zou,Dongping Sun,Vincent Torre,Qi Zhang,Renjie Chai,Mingliang Tang
出处
期刊:Colloids and Surfaces B: Biointerfaces [Elsevier BV]
卷期号:200: 111590-111590 被引量:76
标识
DOI:10.1016/j.colsurfb.2021.111590
摘要

Neural stem cell (NSC)-based therapy is a promising candidate for treating neurodegenerative diseases and the preclinical researches call an urgent need for regulating the growth and differentiation of such cells. The recognition that three-dimensional culture has the potential to be a biologically significant system has stimulated an extraordinary impetus for scientific researches in tissue engineering and regenerative medicine. Here, A novel scaffold for culturing NSCs, three-dimensional bacterial cellulose-graphene foam (3D-BC/G), which was prepared via in situ bacterial cellulose interfacial polymerization on the skeleton surface of porous graphene foam has been reported. 3D-BC/G not only supports NSC growth and adhesion, but also maintains NSC stemness and enhances their proliferative capacity. Further phenotypic analysis indicated that 3D-BC/G induces NSCs to selectively differentiate into neurons, forming a neural network in a short amount of time. The scaffold has good biocompatibility with primary cortical neurons enhancing the neuronal network activities. To explore the underlying mechanisms, RNA-Seq analysis to identify genes and signaling pathways was performed and it suggests that 3D-BC/G offers a more promising three-dimensional conductive substrate for NSC research and neural tissue engineering, and the repertoire of gene expression serves as a basis for further studies to better understand NSC biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
arrow13完成签到,获得积分10
1秒前
conghuang发布了新的文献求助10
3秒前
李健的粉丝团团长应助owl采纳,获得10
3秒前
小马甲应助王羊补牢采纳,获得10
3秒前
3秒前
3秒前
dmj发布了新的文献求助10
5秒前
5秒前
天天完成签到,获得积分10
6秒前
7秒前
7秒前
大模型应助1111采纳,获得60
7秒前
称心寒松发布了新的文献求助10
8秒前
大饼卷肉完成签到,获得积分10
8秒前
ZZZZ发布了新的文献求助10
8秒前
8秒前
一朵会长树的花完成签到,获得积分10
9秒前
FashionBoy应助123采纳,获得10
9秒前
conghuang完成签到,获得积分10
9秒前
arrow13发布了新的文献求助10
9秒前
11秒前
科研通AI5应助Tian采纳,获得10
11秒前
几斗完成签到 ,获得积分10
11秒前
大个应助dmj采纳,获得10
11秒前
morning完成签到,获得积分10
12秒前
昔年完成签到 ,获得积分10
12秒前
康小郁完成签到,获得积分10
12秒前
天天发布了新的文献求助10
13秒前
13秒前
Breeze完成签到,获得积分10
13秒前
王sir发布了新的文献求助10
14秒前
14秒前
Larvenpiz完成签到,获得积分10
15秒前
mazg给mazg的求助进行了留言
16秒前
16秒前
17秒前
烟花应助Neil采纳,获得10
17秒前
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427