Sixteen facial expressions occur in similar contexts worldwide

面部表情 集合(抽象数据类型) 突出 背景(考古学) 认知心理学 心理学 功能(生物学) 计算机科学 生物 沟通 人工智能 地理 进化生物学 考古 程序设计语言
作者
Alan Cowen,Dacher Keltner,Florian Schroff,Brendan Jou,Hartwig Adam,Gautam Prasad
出处
期刊:Nature [Springer Nature]
卷期号:589 (7841): 251-257 被引量:163
标识
DOI:10.1038/s41586-020-3037-7
摘要

Understanding the degree to which human facial expressions co-vary with specific social contexts across cultures is central to the theory that emotions enable adaptive responses to important challenges and opportunities1–6. Concrete evidence linking social context to specific facial expressions is sparse and is largely based on survey-based approaches, which are often constrained by language and small sample sizes7–13. Here, by applying machine-learning methods to real-world, dynamic behaviour, we ascertain whether naturalistic social contexts (for example, weddings or sporting competitions) are associated with specific facial expressions14 across different cultures. In two experiments using deep neural networks, we examined the extent to which 16 types of facial expression occurred systematically in thousands of contexts in 6 million videos from 144 countries. We found that each kind of facial expression had distinct associations with a set of contexts that were 70% preserved across 12 world regions. Consistent with these associations, regions varied in how frequently different facial expressions were produced as a function of which contexts were most salient. Our results reveal fine-grained patterns in human facial expressions that are preserved across the modern world. An analysis of 16 types of facial expression in thousands of contexts in millions of videos revealed fine-grained patterns in human facial expression that are preserved across the modern world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无铭发布了新的文献求助10
刚刚
研友_Z11ONZ完成签到,获得积分20
1秒前
2秒前
4秒前
叶子发布了新的文献求助10
4秒前
5秒前
6秒前
烟花应助man采纳,获得10
8秒前
Wtony完成签到 ,获得积分10
9秒前
yizhilaohuli发布了新的文献求助10
9秒前
10秒前
科研通AI2S应助Hover采纳,获得10
10秒前
11秒前
顾矜应助怡然南松采纳,获得10
11秒前
风中晓露发布了新的文献求助30
12秒前
liwenmming完成签到,获得积分10
12秒前
13秒前
呜呼啦呼发布了新的文献求助10
17秒前
carbon-dots完成签到,获得积分10
18秒前
稳重向南发布了新的文献求助10
18秒前
ZG关注了科研通微信公众号
19秒前
19秒前
虚拟的斑马完成签到,获得积分10
20秒前
21秒前
呼噜噜完成签到,获得积分20
23秒前
NexusExplorer应助稳重向南采纳,获得10
25秒前
yiyi完成签到 ,获得积分10
25秒前
26秒前
Jack发布了新的文献求助10
26秒前
乐乐乐乐乐乐应助Hover采纳,获得10
26秒前
wsy1234完成签到,获得积分10
27秒前
超级笑南发布了新的文献求助10
27秒前
27秒前
学以致用完成签到,获得积分10
28秒前
28秒前
不吃坏橘子完成签到,获得积分10
28秒前
丘比特应助篇篇高分采纳,获得10
29秒前
嘎嘎完成签到,获得积分10
29秒前
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242812
求助须知:如何正确求助?哪些是违规求助? 2886987
关于积分的说明 8245530
捐赠科研通 2555561
什么是DOI,文献DOI怎么找? 1383656
科研通“疑难数据库(出版商)”最低求助积分说明 649728
邀请新用户注册赠送积分活动 625605