医学
病历
紧急医疗服务
急诊科
医疗急救
心理干预
临床预测规则
急诊医学
胸痛
机器学习
内科学
计算机科学
精神科
作者
Rachel Stemerman,Thomas Bunning,Joseph M. Grover,Rebecca Rutherford Kitzmiller,Mehul D. Patel
标识
DOI:10.1080/10903127.2020.1859658
摘要
Objective: Emergency medical services (EMS) provide critical interventions for patients with acute illness and injury and are important in implementing prehospital emergency care research. Retrospective, manual patient record review, the current reference-standard for identifying patient cohorts, requires significant time and financial investment. We developed automated classification models to identify eligible patients for prehospital clinical trials using EMS clinical notes and compared model performance to manual review.Methods: With eligibility criteria for an ongoing prehospital study of chest pain patients, we used EMS clinical notes (n = 1208) to manually classify patients as eligible, ineligible, and indeterminate. We randomly split these same records into training and test sets to develop and evaluate machine-learning (ML) algorithms using natural language processing (NLP) for feature (variable) selection. We compared models to the manual classification to calculate sensitivity, specificity, accuracy, positive predictive value, and F1 measure. We measured clinical expert time to perform review for manual and automated methods.Results: ML models’ sensitivity, specificity, accuracy, positive predictive value, and F1 measure ranged from 0.93 to 0.98. Compared to manual classification (N = 363 records), the automated method excluded 90.9% of records as ineligible and leaving only 33 records for manual review.Conclusions: Our ML derived approach demonstrates the feasibility of developing a high-performing, automated classification system using EMS clinical notes to streamline the identification of a specific cardiac patient cohort. This efficient approach can be leveraged to facilitate prehospital patient-trial matching, patient phenotyping (i.e. influenza-like illness), and create prehospital patient registries.
科研通智能强力驱动
Strongly Powered by AbleSci AI