Zinc-Ion Conducting Nonaqueous Polymer Electrolyte for Zinc-Metal Batteries through UV-Light Induced Cross-Linking Polymerization

电解质 聚合 无机化学 碳酸丙烯酯 聚合物 化学 材料科学 三氟甲磺酸 电极 有机化学 物理化学 催化作用
作者
Vidyanand Vijayakumar,Meena Ghosh,Maria Kurian,Swati Dilwale,Arun Torris,Manohar V. Badiger,Jijeesh Ravi Nair,Martin Winter,Sreekumar Kurungot
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (4): 825-825
标识
DOI:10.1149/ma2020-024825mtgabs
摘要

Recently, rechargeable zinc-metal batteries (ZMBs) employing a metallic zinc (Zn) anode (negative electrode) coupled with a suitable cathode (positive electrode), and a zinc-ion conducting electrolyte are receiving tremendous attention as a post-lithium battery technology among the electrochemists. ( 1 ) Mostly, the electrolyte of choice in ZMBs are aqueous liquid electrolytes with few available reports on aqueous gel polymer electrolytes. The use of aqueous electrolytes often restricts the operation of the cell to potentials below 2V vs. Zn|Zn 2+ . ( 2 ) To improve the operating voltage of the ZMB cells, nonaqueous electrolytes can be employed. Despite few available reports suggesting acetonitrile and carbonate solvent-based nonaqueous liquid electrolytes for ZMBs, nonaqueous zinc-ion conducting polymer electrolytes (ZIPs) are rarely explored in ZMB full-cells. ( 3 ) During the evolution of nonaqueous ZMB technology, a transition from nonaqueous liquid electrolytes to solid/semi-solid-state ZIPs is highly desirable, which can leverage the prospects of futuristic safe and flexible ZMBs. In this context, we are reporting a simple and scalable process for the preparation of cross-linked ZIPs by ultraviolet (UV)-light induced cross-linking polymerization. The reactive mixture consisting of mono- and di-functional acrylate monomers, propylene carbonate solvent as the active plasticizer, zinc trifluoromethanesulfonate (Zn(OTf) 2 ) as the conducting salt, and a photo-initiator, on UV curing produces mechanically stable ZIP films. ( 4 ) Depending on the concentration of zinc-salt in the ZIP, the physicochemical properties were found to be varied. For instance, the glass transition temperature, as well as the compressibility of the ZIPs, increased with an increase in zinc-salt content. The optimized ZIP with ≈ 20 wt.% Zn-salt displayed the highest ionic conductivity value in the order of 10 -3 S/cm at room temperature. The same ZIP exhibited an oxidation stability beyond 2.4 V vs . Zn/Zn 2+ , which was higher than ZIPs with low zinc-salt content. Besides, the same ZIP exhibited a stable plating/stripping profile for approximately 8 days in Zn|ZIP|Zn symmetric cell indicating excellent interfacial compatibility against Zn metal. For fabricating ZMB full-cell using the optimized ZIP, vanadyl phosphate (VOPO 4 . 2H 2 O) was used as the cathode. The VOPO 4 . 2H 2 O|ZIP|Zn cell was fabricated by the direct generation of ZIP over the cathode electrode (the in situ polymerizationprocess) ( 5 ) . The in situ process helps in achieving an improved electrode|electrolyte interface compared to the ZIP film-based ZMB cell. On cycling, the in situ fabricated ZMB cell exhibited a specific capacity of ≈ 80 mAh g -1 at a current density of 0.50 A/g. At 0.20 A/g, the ZMB cell retained 63% of the initial capacity over 50 continuous galvanostatic charge-discharge cycles. Considering the rarely explored nonaqueous zinc electrochemistry in polymer electrolytes, this report is important, improving the prospects of zinc-based post-lithium battery technology. References G. Fang, J. Zhou, A. Pan and S. Liang, ACS Energy Letters , 3 , 2480 (2018). M. Ghosh, V. Vijayakumar and S. Kurungot, Energy Technology , 7 , 1900442 (2019). Y. Zhang, Z. Chen, H. Qiu, W. Yang, Z. Zhao, J. Zhao and G. Cui, NPG Asia Materials , 12 , 1 (2020). V. Vijayakumar, D. Diddens, A. Heuer, S. Kurungot, M. Winter and J. R. Nair, ACS Applied Materials & Interfaces , 12 , 567 (2020). V. Vijayakumar, B. Anothumakkool, S. B. Nair, M. V. Badiger and S. Kurungot, Journal of Materials Chemistry A , 5 , 8461 (2017). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HuSP发布了新的文献求助30
1秒前
1秒前
baimafeima发布了新的文献求助10
1秒前
Hello应助猫抓板采纳,获得10
2秒前
科研通AI5应助我爱吃菜采纳,获得10
2秒前
科研通AI5应助凝子老师采纳,获得10
2秒前
wyyyy完成签到,获得积分10
3秒前
orixero应助ziyue采纳,获得10
3秒前
zy关闭了zy文献求助
3秒前
肖战战完成签到 ,获得积分10
4秒前
科研通AI5应助孤独的广缘采纳,获得10
4秒前
5秒前
qiushi6完成签到,获得积分10
5秒前
呜呜呜呜发布了新的文献求助10
6秒前
6秒前
晓畅完成签到,获得积分10
6秒前
dddd完成签到 ,获得积分20
6秒前
7秒前
7秒前
木棉完成签到,获得积分10
7秒前
魔术师完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
Siche完成签到,获得积分10
9秒前
ln发布了新的文献求助10
9秒前
HuSP完成签到,获得积分10
10秒前
shawfang完成签到,获得积分10
10秒前
瘦墩墩完成签到 ,获得积分10
10秒前
生动的芙蓉完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
July关注了科研通微信公众号
11秒前
哇哇哇发布了新的文献求助10
11秒前
12秒前
浮游应助杭三问采纳,获得10
12秒前
Kim发布了新的文献求助20
12秒前
久晓发布了新的文献求助10
12秒前
香蕉觅云应助木林山水采纳,获得200
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957081
求助须知:如何正确求助?哪些是违规求助? 4218721
关于积分的说明 13130795
捐赠科研通 4001503
什么是DOI,文献DOI怎么找? 2189873
邀请新用户注册赠送积分活动 1204816
关于科研通互助平台的介绍 1116465