Machine learning can predict disease manifestations and outcomes in lymphangioleiomyomatosis

淋巴管平滑肌瘤病 医学 前瞻性队列研究 星团(航天器) 队列 气胸 队列研究 内科学 外科 计算机科学 程序设计语言
作者
Saisakul Chernbumroong,JANICE H. JOHNSON,Nishant Gupta,S. Miller,Francis X. McCormack,Jonathan M. Garibaldi,Simon R. Johnson
出处
期刊:The European respiratory journal [European Respiratory Society]
卷期号:57 (6): 2003036-2003036 被引量:8
标识
DOI:10.1183/13993003.03036-2020
摘要

Background Lymphangioleiomyomatosis (LAM) is a rare multisystem disease with variable clinical manifestations and differing rates of progression that make management decisions and giving prognostic advice difficult. We used machine learning to identify clusters of associated features which could be used to stratify patients and predict outcomes in individuals. Patients and methods Using unsupervised machine learning we generated patient clusters using data from 173 women with LAM from the UK and 186 replication subjects from the US National Heart, Lung, and Blood Institute (NHLBI) LAM registry. Prospective outcomes were associated with cluster results. Results Two- and three-cluster models were developed. A three-cluster model separated a large group of subjects presenting with dyspnoea or pneumothorax from a second cluster with a high prevalence of angiomyolipoma symptoms (p=0.0001) and tuberous sclerosis complex (TSC) (p=0.041). Patients in the third cluster were older, never presented with dyspnoea or pneumothorax (p=0.0001) and had better lung function. Similar clusters were reproduced in the NHLBI cohort. Assigning patients to clusters predicted prospective outcomes: in a two-cluster model the future risk of pneumothorax was 3.3 (95% CI 1.7–5.6)-fold greater in cluster 1 than cluster 2 (p=0.0002). Using the three-cluster model, the need for intervention for angiomyolipoma was lower in clusters 2 and 3 than cluster 1 (p<0.00001). In the NHLBI cohort, the incidence of death or lung transplant was much lower in clusters 2 and 3 (p=0.0045). Conclusions Machine learning has identified clinically relevant clusters associated with complications and outcome. Assigning individuals to clusters could improve decision making and prognostic information for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
儒雅的十八完成签到,获得积分10
2秒前
一一发布了新的文献求助10
2秒前
4秒前
xiaos发布了新的文献求助10
4秒前
浮游应助exosome采纳,获得10
5秒前
诚心孤菱发布了新的文献求助10
5秒前
6秒前
一个葱粉完成签到,获得积分10
6秒前
从容的路灯完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
aaa发布了新的文献求助10
7秒前
8秒前
冷静初彤发布了新的文献求助20
8秒前
Owen应助ccm采纳,获得10
9秒前
9秒前
TAO完成签到,获得积分10
10秒前
13秒前
htt完成签到,获得积分10
13秒前
科研通AI6应助诚心孤菱采纳,获得10
14秒前
朱柯虹完成签到,获得积分20
14秒前
逃逸艺术家完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
16秒前
zhang发布了新的文献求助10
16秒前
17秒前
顾矜应助aara采纳,获得10
17秒前
17秒前
wenyiboy完成签到,获得积分10
17秒前
小虾米完成签到,获得积分10
18秒前
18秒前
兴奋的台灯完成签到 ,获得积分10
19秒前
19秒前
coconut发布了新的文献求助10
19秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241527
求助须知:如何正确求助?哪些是违规求助? 4408237
关于积分的说明 13721344
捐赠科研通 4277307
什么是DOI,文献DOI怎么找? 2347120
邀请新用户注册赠送积分活动 1344148
关于科研通互助平台的介绍 1302323