已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning can predict disease manifestations and outcomes in lymphangioleiomyomatosis

淋巴管平滑肌瘤病 医学 前瞻性队列研究 星团(航天器) 队列 气胸 队列研究 内科学 外科 计算机科学 程序设计语言
作者
Saisakul Chernbumroong,JANICE H. JOHNSON,Nishant Gupta,S. Miller,Francis X. McCormack,Jonathan M. Garibaldi,Simon R. Johnson
出处
期刊:The European respiratory journal [European Respiratory Society]
卷期号:57 (6): 2003036-2003036 被引量:8
标识
DOI:10.1183/13993003.03036-2020
摘要

Background Lymphangioleiomyomatosis (LAM) is a rare multisystem disease with variable clinical manifestations and differing rates of progression that make management decisions and giving prognostic advice difficult. We used machine learning to identify clusters of associated features which could be used to stratify patients and predict outcomes in individuals. Patients and methods Using unsupervised machine learning we generated patient clusters using data from 173 women with LAM from the UK and 186 replication subjects from the US National Heart, Lung, and Blood Institute (NHLBI) LAM registry. Prospective outcomes were associated with cluster results. Results Two- and three-cluster models were developed. A three-cluster model separated a large group of subjects presenting with dyspnoea or pneumothorax from a second cluster with a high prevalence of angiomyolipoma symptoms (p=0.0001) and tuberous sclerosis complex (TSC) (p=0.041). Patients in the third cluster were older, never presented with dyspnoea or pneumothorax (p=0.0001) and had better lung function. Similar clusters were reproduced in the NHLBI cohort. Assigning patients to clusters predicted prospective outcomes: in a two-cluster model the future risk of pneumothorax was 3.3 (95% CI 1.7–5.6)-fold greater in cluster 1 than cluster 2 (p=0.0002). Using the three-cluster model, the need for intervention for angiomyolipoma was lower in clusters 2 and 3 than cluster 1 (p<0.00001). In the NHLBI cohort, the incidence of death or lung transplant was much lower in clusters 2 and 3 (p=0.0045). Conclusions Machine learning has identified clinically relevant clusters associated with complications and outcome. Assigning individuals to clusters could improve decision making and prognostic information for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安详向薇完成签到,获得积分10
1秒前
imss1发布了新的文献求助20
3秒前
3秒前
4秒前
huangy发布了新的文献求助10
4秒前
5秒前
Chalo发布了新的文献求助30
8秒前
现代的半兰完成签到,获得积分10
10秒前
帅气的秘密完成签到 ,获得积分10
10秒前
共享精神应助沉静的万天采纳,获得10
10秒前
迷人冥完成签到 ,获得积分10
10秒前
小杨完成签到,获得积分10
11秒前
科研通AI2S应助jiabaoyu采纳,获得10
12秒前
忧郁的寻冬完成签到,获得积分10
15秒前
善学以致用应助海绵宝宝采纳,获得10
17秒前
19秒前
玊尔完成签到,获得积分10
19秒前
20秒前
Zz完成签到,获得积分10
21秒前
iNk应助imss1采纳,获得20
22秒前
24秒前
默默洋葱发布了新的文献求助10
24秒前
灵儿完成签到,获得积分10
25秒前
秋qiu完成签到,获得积分10
28秒前
跳跃的曼寒完成签到,获得积分10
28秒前
song发布了新的文献求助10
29秒前
29秒前
30秒前
小北发布了新的文献求助10
33秒前
34秒前
maitiandehe发布了新的文献求助10
36秒前
LittleBaiOvO发布了新的文献求助10
37秒前
小蘑菇应助科研通管家采纳,获得10
37秒前
彭于晏应助科研通管家采纳,获得10
37秒前
李健应助科研通管家采纳,获得10
37秒前
所所应助科研通管家采纳,获得10
37秒前
酷波er应助科研通管家采纳,获得10
37秒前
乐乐应助科研通管家采纳,获得10
37秒前
CipherSage应助科研通管家采纳,获得10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976531
求助须知:如何正确求助?哪些是违规求助? 3520576
关于积分的说明 11204042
捐赠科研通 3257210
什么是DOI,文献DOI怎么找? 1798648
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806555