清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning can predict disease manifestations and outcomes in lymphangioleiomyomatosis

淋巴管平滑肌瘤病 医学 前瞻性队列研究 星团(航天器) 队列 气胸 队列研究 内科学 外科 计算机科学 程序设计语言
作者
Saisakul Chernbumroong,JANICE H. JOHNSON,Nishant Gupta,S. Miller,Francis X. McCormack,Jonathan M. Garibaldi,Simon R. Johnson
出处
期刊:The European respiratory journal [European Respiratory Society]
卷期号:57 (6): 2003036-2003036 被引量:8
标识
DOI:10.1183/13993003.03036-2020
摘要

Background Lymphangioleiomyomatosis (LAM) is a rare multisystem disease with variable clinical manifestations and differing rates of progression that make management decisions and giving prognostic advice difficult. We used machine learning to identify clusters of associated features which could be used to stratify patients and predict outcomes in individuals. Patients and methods Using unsupervised machine learning we generated patient clusters using data from 173 women with LAM from the UK and 186 replication subjects from the US National Heart, Lung, and Blood Institute (NHLBI) LAM registry. Prospective outcomes were associated with cluster results. Results Two- and three-cluster models were developed. A three-cluster model separated a large group of subjects presenting with dyspnoea or pneumothorax from a second cluster with a high prevalence of angiomyolipoma symptoms (p=0.0001) and tuberous sclerosis complex (TSC) (p=0.041). Patients in the third cluster were older, never presented with dyspnoea or pneumothorax (p=0.0001) and had better lung function. Similar clusters were reproduced in the NHLBI cohort. Assigning patients to clusters predicted prospective outcomes: in a two-cluster model the future risk of pneumothorax was 3.3 (95% CI 1.7–5.6)-fold greater in cluster 1 than cluster 2 (p=0.0002). Using the three-cluster model, the need for intervention for angiomyolipoma was lower in clusters 2 and 3 than cluster 1 (p<0.00001). In the NHLBI cohort, the incidence of death or lung transplant was much lower in clusters 2 and 3 (p=0.0045). Conclusions Machine learning has identified clinically relevant clusters associated with complications and outcome. Assigning individuals to clusters could improve decision making and prognostic information for patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
40秒前
Eileen完成签到 ,获得积分0
43秒前
zzhui完成签到,获得积分10
1分钟前
P_Chem完成签到,获得积分10
1分钟前
浑续完成签到,获得积分10
1分钟前
1分钟前
2分钟前
Jessica发布了新的文献求助10
2分钟前
2分钟前
方白秋完成签到,获得积分0
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
crazy发布了新的文献求助10
3分钟前
3分钟前
狂野的含烟完成签到 ,获得积分10
3分钟前
3分钟前
yiburongci完成签到,获得积分20
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
4分钟前
Lei完成签到,获得积分10
4分钟前
4分钟前
唐唐完成签到,获得积分10
4分钟前
4分钟前
WaWaQAQ发布了新的文献求助10
4分钟前
yiburongci关注了科研通微信公众号
4分钟前
WaWaQAQ完成签到,获得积分10
4分钟前
yiburongci发布了新的文献求助25
5分钟前
Gryff完成签到 ,获得积分10
5分钟前
萝卜猪完成签到,获得积分10
5分钟前
5分钟前
5分钟前
欢呼亦绿完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
Jessica应助精明代灵采纳,获得10
6分钟前
大个应助安静的小蘑菇采纳,获得30
6分钟前
上官若男应助巫马百招采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
紫熊发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664535
求助须知:如何正确求助?哪些是违规求助? 4864753
关于积分的说明 15107992
捐赠科研通 4823177
什么是DOI,文献DOI怎么找? 2582040
邀请新用户注册赠送积分活动 1536144
关于科研通互助平台的介绍 1494545