亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning can predict disease manifestations and outcomes in lymphangioleiomyomatosis

淋巴管平滑肌瘤病 医学 前瞻性队列研究 星团(航天器) 队列 气胸 队列研究 内科学 外科 计算机科学 程序设计语言
作者
Saisakul Chernbumroong,JANICE H. JOHNSON,Nishant Gupta,S. Miller,Francis X. McCormack,Jonathan M. Garibaldi,Simon R. Johnson
出处
期刊:The European respiratory journal [European Respiratory Society]
卷期号:57 (6): 2003036-2003036 被引量:8
标识
DOI:10.1183/13993003.03036-2020
摘要

Background Lymphangioleiomyomatosis (LAM) is a rare multisystem disease with variable clinical manifestations and differing rates of progression that make management decisions and giving prognostic advice difficult. We used machine learning to identify clusters of associated features which could be used to stratify patients and predict outcomes in individuals. Patients and methods Using unsupervised machine learning we generated patient clusters using data from 173 women with LAM from the UK and 186 replication subjects from the US National Heart, Lung, and Blood Institute (NHLBI) LAM registry. Prospective outcomes were associated with cluster results. Results Two- and three-cluster models were developed. A three-cluster model separated a large group of subjects presenting with dyspnoea or pneumothorax from a second cluster with a high prevalence of angiomyolipoma symptoms (p=0.0001) and tuberous sclerosis complex (TSC) (p=0.041). Patients in the third cluster were older, never presented with dyspnoea or pneumothorax (p=0.0001) and had better lung function. Similar clusters were reproduced in the NHLBI cohort. Assigning patients to clusters predicted prospective outcomes: in a two-cluster model the future risk of pneumothorax was 3.3 (95% CI 1.7–5.6)-fold greater in cluster 1 than cluster 2 (p=0.0002). Using the three-cluster model, the need for intervention for angiomyolipoma was lower in clusters 2 and 3 than cluster 1 (p<0.00001). In the NHLBI cohort, the incidence of death or lung transplant was much lower in clusters 2 and 3 (p=0.0045). Conclusions Machine learning has identified clinically relevant clusters associated with complications and outcome. Assigning individuals to clusters could improve decision making and prognostic information for patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知悉发布了新的文献求助10
1秒前
zxcvvbb1001完成签到 ,获得积分10
17秒前
31秒前
奋斗一刀发布了新的文献求助10
34秒前
一一发布了新的文献求助10
1分钟前
1分钟前
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
2分钟前
易一完成签到 ,获得积分10
2分钟前
xch发布了新的文献求助10
2分钟前
xch完成签到,获得积分10
2分钟前
2分钟前
斑驳完成签到,获得积分10
2分钟前
2分钟前
乐乐应助斑驳采纳,获得10
2分钟前
霹雳Young发布了新的文献求助10
2分钟前
传奇3应助Luke采纳,获得10
2分钟前
2分钟前
2分钟前
斑驳发布了新的文献求助10
3分钟前
3分钟前
Luke发布了新的文献求助10
3分钟前
3分钟前
含糊的尔槐完成签到,获得积分10
3分钟前
霹雳Young完成签到 ,获得积分10
3分钟前
3分钟前
奋斗一刀发布了新的文献求助10
4分钟前
tts发布了新的文献求助10
4分钟前
Nichols完成签到,获得积分10
5分钟前
激动的似狮完成签到,获得积分0
5分钟前
5分钟前
bkagyin应助tts采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
丘比特应助Luke采纳,获得10
5分钟前
tts完成签到,获得积分10
5分钟前
Cat4pig完成签到 ,获得积分10
5分钟前
Party发布了新的文献求助10
6分钟前
大模型应助Party采纳,获得10
6分钟前
kklkimo完成签到,获得积分10
6分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644846
求助须知:如何正确求助?哪些是违规求助? 4766044
关于积分的说明 15025757
捐赠科研通 4803208
什么是DOI,文献DOI怎么找? 2568081
邀请新用户注册赠送积分活动 1525533
关于科研通互助平台的介绍 1485079