Histopathological Stain Transfer Using Style Transfer Network with Adversarial Loss

污渍 计算机科学 人工智能 规范化(社会学) 模式识别(心理学) 扫描仪 学习迁移 计算机视觉 染色 病理 医学 人类学 社会学
作者
Harshal Nishar,Nikhil Chavanke,Nitin Singhal
出处
期刊:Lecture Notes in Computer Science 卷期号:: 330-340 被引量:10
标识
DOI:10.1007/978-3-030-59722-1_32
摘要

Deep learning models that are trained on histopathological images obtained from a single lab and/or scanner give poor inference performance on images obtained from another scanner/lab with a different staining protocol. In recent years, there has been a good amount of research done for image stain normalization to address this issue. In this work, we present a novel approach for the stain normalization problem using fast neural style transfer coupled with adversarial loss. We also propose a novel stain transfer generator network based on High-Resolution Network (HRNet) which requires less training time and gives good generalization with few paired training images of reference stain and test stain. This approach has been tested on Whole Slide Images (WSIs) obtained from 8 different labs, where images from one lab were treated as a reference stain. A deep learning model was trained on this stain and the rest of the images were transferred to it using the corresponding stain transfer generator network. Experimentation suggests that this approach is able to successfully perform stain normalization with good visual quality and provides better inference performance compared to not applying stain normalization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CAOHOU应助王w采纳,获得10
刚刚
科研通AI6.1应助王w采纳,获得10
刚刚
机智洋完成签到,获得积分10
刚刚
完美的冬瓜完成签到,获得积分10
2秒前
2秒前
avalanche发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
eywct完成签到,获得积分10
4秒前
云为翳发布了新的文献求助10
5秒前
WY发布了新的文献求助10
5秒前
6秒前
林林完成签到,获得积分10
6秒前
6秒前
7秒前
wang完成签到,获得积分0
7秒前
我是老大应助刘文辉采纳,获得10
7秒前
幸福幻巧应助lhlhl采纳,获得10
7秒前
7秒前
大模型应助清浅采纳,获得10
8秒前
肖旻发布了新的文献求助10
8秒前
礼志发布了新的文献求助10
8秒前
10秒前
大白应助long采纳,获得50
10秒前
10秒前
11秒前
落日曜完成签到 ,获得积分10
11秒前
11秒前
椰子水完成签到,获得积分10
11秒前
坚强的孤容完成签到,获得积分20
12秒前
pan关闭了pan文献求助
12秒前
Chengsir完成签到,获得积分10
13秒前
13秒前
黄梓同完成签到,获得积分10
13秒前
wz完成签到,获得积分10
13秒前
ttttt完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784905
求助须知:如何正确求助?哪些是违规求助? 5684415
关于积分的说明 15465839
捐赠科研通 4913887
什么是DOI,文献DOI怎么找? 2644971
邀请新用户注册赠送积分活动 1592868
关于科研通互助平台的介绍 1547242