材料科学
丝素
多孔性
纳米复合材料
脚手架
静电纺丝
复合材料
碳纳米纤维
纳米纤维
丝绸
化学工程
组织工程
碳纳米管
聚合物
生物医学工程
工程类
医学
作者
Yiğithan Tufan,Hayriye Öztatlı,Bora Gari̇pcan,Batur Ercan
标识
DOI:10.1088/1748-605x/abc3db
摘要
Tissue engineering applications typically require three-dimensional scaffolds which provide the requisite surface area for cellular functions, while allowing transport of nutrients, waste and oxygen to and from the surrounding tissues. Scaffolds need to ensure sufficient mechanical properties to provide mechanically stable frameworks under physiologically relevant stress levels. Meanwhile, electrically conductive platforms are also desirable for the regeneration of specific tissues, where electrical impulses are transmitted throughout the tissue for proper physiological functioning. Towards this goal, carbon nanofibers (CNFs) were incorporated into silk fibroin (SF) scaffolds whose pore size and porosity were controlled during a salt leaching process. In our methodology, CNFs were dispersed in SF due to the hydrogen bond-forming ability of hexafluoro-2-propanol, a fluoroalcohol used as a solvent for SF. Results showed enhanced electrical conductivity and mechanical properties upon the incorporation of CNFs into the SF scaffolds, while the metabolic activities of cells cultured on SF/CNF nanocomposite scaffolds were significantly improved by optimizing the CNF content, porosity and pore size range of the scaffolds. Specifically, SF/CNF nanocomposite scaffolds with electrical conductivities as high as 0.023 S cm-1, tangent modulus values of 260 ± 30 kPa, a porosity as high as 78% and a pore size of 376 ± 53 µm were fabricated for the first time in the literature. Furthermore, an increase of about 34% in the wettability of SF was achieved by the incorporation of 10% CNF, which provided enhanced fibroblast spreading on scaffold surfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI