Pairwise Two-Stream ConvNets for Cross-Domain Action Recognition With Small Data

计算机科学 成对比较 人工智能 模式识别(心理学) 杠杆(统计) 机器学习 试验数据 数据挖掘 程序设计语言
作者
Zan Gao,Leming Guo,Tongwei Ren,An-An Liu,Zhiyong Cheng,Shengyong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 1147-1161 被引量:18
标识
DOI:10.1109/tnnls.2020.3041018
摘要

In this work, we target cross-domain action recognition (CDAR) in the video domain and propose a novel end-to-end pairwise two-stream ConvNets (PTC) algorithm for real-life conditions, in which only a few labeled samples are available. To cope with the limited training sample problem, we employ pairwise network architecture that can leverage training samples from a source domain and, thus, requires only a few labeled samples per category from the target domain. In particular, a frame self-attention mechanism and an adaptive weight scheme are embedded into the PTC network to adaptively combine the RGB and flow features. This design can effectively learn domain-invariant features for both the source and target domains. In addition, we propose a sphere boundary sample-selecting scheme that selects the training samples at the boundary of a class (in the feature space) to train the PTC model. In this way, a well-enhanced generalization capability can be achieved. To validate the effectiveness of our PTC model, we construct two CDAR data sets (SDAI Action I and SDAI Action II) that include indoor and outdoor environments; all actions and samples in these data sets were carefully collected from public action data sets. To the best of our knowledge, these are the first data sets specifically designed for the CDAR task. Extensive experiments were conducted on these two data sets. The results show that PTC outperforms state-of-the-art video action recognition methods in terms of both accuracy and training efficiency. It is noteworthy that when only two labeled training samples per category are used in the SDAI Action I data set, PTC achieves 21.9% and 6.8% improvement in accuracy over two-stream and temporal segment networks models, respectively. As an added contribution, the SDAI Action I and SDAI Action II data sets will be released to facilitate future research on the CDAR task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助圈圈采纳,获得10
刚刚
1秒前
wangpl1607发布了新的文献求助10
2秒前
科研通AI2S应助cbz采纳,获得10
2秒前
bkagyin应助好滴捏采纳,获得10
2秒前
鑫渊完成签到,获得积分10
3秒前
3秒前
木穹完成签到,获得积分0
3秒前
爆米花应助羊木采纳,获得10
4秒前
5秒前
852应助端庄大米采纳,获得10
6秒前
njxray完成签到 ,获得积分10
6秒前
7秒前
gs发布了新的文献求助10
7秒前
莫筱铭发布了新的文献求助10
7秒前
熊本熊完成签到,获得积分10
7秒前
陈星完成签到,获得积分10
7秒前
现代的雅彤完成签到 ,获得积分10
7秒前
姚盈盈发布了新的文献求助10
8秒前
8秒前
SciGPT应助嘉嘉sone采纳,获得10
9秒前
风中凌旋应助内向灵凡采纳,获得10
10秒前
10秒前
11秒前
12秒前
认真浩宇发布了新的文献求助30
12秒前
12秒前
思源应助热情的板栗采纳,获得10
12秒前
13秒前
123发布了新的文献求助10
14秒前
羊木完成签到,获得积分10
15秒前
所所应助可耐的手机采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
橙橙妈妈发布了新的文献求助10
16秒前
coco发布了新的文献求助10
17秒前
羊木发布了新的文献求助10
17秒前
nfmhh发布了新的文献求助20
19秒前
野原发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578523
求助须知:如何正确求助?哪些是违规求助? 4663413
关于积分的说明 14746147
捐赠科研通 4604178
什么是DOI,文献DOI怎么找? 2526874
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465787