Pairwise Two-Stream ConvNets for Cross-Domain Action Recognition With Small Data

计算机科学 成对比较 人工智能 模式识别(心理学) 杠杆(统计) 机器学习 试验数据 数据挖掘 程序设计语言
作者
Zan Gao,Leming Guo,Tongwei Ren,An-An Liu,Zhiyong Cheng,Shengyong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 1147-1161 被引量:18
标识
DOI:10.1109/tnnls.2020.3041018
摘要

In this work, we target cross-domain action recognition (CDAR) in the video domain and propose a novel end-to-end pairwise two-stream ConvNets (PTC) algorithm for real-life conditions, in which only a few labeled samples are available. To cope with the limited training sample problem, we employ pairwise network architecture that can leverage training samples from a source domain and, thus, requires only a few labeled samples per category from the target domain. In particular, a frame self-attention mechanism and an adaptive weight scheme are embedded into the PTC network to adaptively combine the RGB and flow features. This design can effectively learn domain-invariant features for both the source and target domains. In addition, we propose a sphere boundary sample-selecting scheme that selects the training samples at the boundary of a class (in the feature space) to train the PTC model. In this way, a well-enhanced generalization capability can be achieved. To validate the effectiveness of our PTC model, we construct two CDAR data sets (SDAI Action I and SDAI Action II) that include indoor and outdoor environments; all actions and samples in these data sets were carefully collected from public action data sets. To the best of our knowledge, these are the first data sets specifically designed for the CDAR task. Extensive experiments were conducted on these two data sets. The results show that PTC outperforms state-of-the-art video action recognition methods in terms of both accuracy and training efficiency. It is noteworthy that when only two labeled training samples per category are used in the SDAI Action I data set, PTC achieves 21.9% and 6.8% improvement in accuracy over two-stream and temporal segment networks models, respectively. As an added contribution, the SDAI Action I and SDAI Action II data sets will be released to facilitate future research on the CDAR task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助axunQAQ采纳,获得10
1秒前
完美秋烟发布了新的文献求助10
1秒前
无花果应助糊涂的小伙采纳,获得10
1秒前
白betty完成签到,获得积分10
1秒前
MQ&FF完成签到,获得积分0
2秒前
啦啦啦完成签到,获得积分10
3秒前
4秒前
5秒前
英俊的铭应助小安采纳,获得10
6秒前
7秒前
sun完成签到,获得积分10
7秒前
耍酷的夏云应助勤劳落雁采纳,获得10
9秒前
9秒前
ywang发布了新的文献求助10
9秒前
车秋寒完成签到,获得积分10
9秒前
刘哈哈关注了科研通微信公众号
9秒前
葱饼完成签到 ,获得积分10
10秒前
Anquan完成签到,获得积分10
10秒前
yudandan@CJLU发布了新的文献求助10
11秒前
鱼儿123完成签到,获得积分10
11秒前
端庄的访枫完成签到 ,获得积分10
12秒前
车秋寒发布了新的文献求助10
12秒前
12秒前
完美秋烟完成签到,获得积分10
13秒前
14秒前
16秒前
lee1992完成签到,获得积分10
16秒前
nextconnie发布了新的文献求助10
17秒前
nextconnie发布了新的文献求助10
17秒前
nextconnie发布了新的文献求助10
17秒前
CO2发布了新的文献求助10
18秒前
uniquedl完成签到 ,获得积分10
18秒前
nextconnie发布了新的文献求助10
18秒前
子伊完成签到 ,获得积分10
19秒前
22秒前
22秒前
22秒前
今后应助憨鬼憨切采纳,获得10
24秒前
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849