Pairwise Two-Stream ConvNets for Cross-Domain Action Recognition With Small Data

计算机科学 成对比较 人工智能 模式识别(心理学) 杠杆(统计) 机器学习 试验数据 数据挖掘 程序设计语言
作者
Zan Gao,Leming Guo,Tongwei Ren,An-An Liu,Zhiyong Cheng,Shengyong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 1147-1161 被引量:18
标识
DOI:10.1109/tnnls.2020.3041018
摘要

In this work, we target cross-domain action recognition (CDAR) in the video domain and propose a novel end-to-end pairwise two-stream ConvNets (PTC) algorithm for real-life conditions, in which only a few labeled samples are available. To cope with the limited training sample problem, we employ pairwise network architecture that can leverage training samples from a source domain and, thus, requires only a few labeled samples per category from the target domain. In particular, a frame self-attention mechanism and an adaptive weight scheme are embedded into the PTC network to adaptively combine the RGB and flow features. This design can effectively learn domain-invariant features for both the source and target domains. In addition, we propose a sphere boundary sample-selecting scheme that selects the training samples at the boundary of a class (in the feature space) to train the PTC model. In this way, a well-enhanced generalization capability can be achieved. To validate the effectiveness of our PTC model, we construct two CDAR data sets (SDAI Action I and SDAI Action II) that include indoor and outdoor environments; all actions and samples in these data sets were carefully collected from public action data sets. To the best of our knowledge, these are the first data sets specifically designed for the CDAR task. Extensive experiments were conducted on these two data sets. The results show that PTC outperforms state-of-the-art video action recognition methods in terms of both accuracy and training efficiency. It is noteworthy that when only two labeled training samples per category are used in the SDAI Action I data set, PTC achieves 21.9% and 6.8% improvement in accuracy over two-stream and temporal segment networks models, respectively. As an added contribution, the SDAI Action I and SDAI Action II data sets will be released to facilitate future research on the CDAR task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽的牛青完成签到,获得积分10
刚刚
likestring发布了新的文献求助10
刚刚
刚刚
稳重的怜容完成签到 ,获得积分10
刚刚
快乐小刘完成签到,获得积分10
刚刚
善学以致用应助LYj采纳,获得10
1秒前
Milton_z发布了新的文献求助10
1秒前
1秒前
1秒前
老鼠耗子完成签到,获得积分10
1秒前
尹姝完成签到,获得积分10
1秒前
罗又柔完成签到 ,获得积分10
1秒前
2秒前
乔乐发布了新的文献求助10
2秒前
要减肥的夜南完成签到,获得积分10
2秒前
高大一一完成签到,获得积分10
2秒前
王木木爱喝周完成签到 ,获得积分10
2秒前
幸福果汁完成签到,获得积分10
3秒前
3秒前
3秒前
小乌龟发布了新的文献求助10
3秒前
微笑的依凝完成签到,获得积分10
4秒前
乐乐应助柏凡采纳,获得10
4秒前
丽丽完成签到,获得积分10
4秒前
5秒前
邓佳鑫Alan应助深情的白薇采纳,获得20
5秒前
Michelle发布了新的文献求助10
5秒前
Li发布了新的文献求助10
5秒前
酷波er应助x421采纳,获得10
5秒前
一匹黑狼发布了新的文献求助10
6秒前
LIUJUN完成签到,获得积分20
6秒前
Joyce菜菜发布了新的文献求助10
6秒前
章鱼哥完成签到,获得积分10
6秒前
6秒前
乔乐完成签到,获得积分10
7秒前
支支发布了新的文献求助10
7秒前
8秒前
桐桐应助2123121321321采纳,获得10
8秒前
孔雀翎发布了新的文献求助10
9秒前
9秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147695
求助须知:如何正确求助?哪些是违规求助? 2798784
关于积分的说明 7831337
捐赠科研通 2455622
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587