Pairwise Two-Stream ConvNets for Cross-Domain Action Recognition With Small Data

计算机科学 成对比较 人工智能 模式识别(心理学) 杠杆(统计) 机器学习 试验数据 数据挖掘 程序设计语言
作者
Zan Gao,Leming Guo,Tongwei Ren,An-An Liu,Zhiyong Cheng,Shengyong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 1147-1161 被引量:18
标识
DOI:10.1109/tnnls.2020.3041018
摘要

In this work, we target cross-domain action recognition (CDAR) in the video domain and propose a novel end-to-end pairwise two-stream ConvNets (PTC) algorithm for real-life conditions, in which only a few labeled samples are available. To cope with the limited training sample problem, we employ pairwise network architecture that can leverage training samples from a source domain and, thus, requires only a few labeled samples per category from the target domain. In particular, a frame self-attention mechanism and an adaptive weight scheme are embedded into the PTC network to adaptively combine the RGB and flow features. This design can effectively learn domain-invariant features for both the source and target domains. In addition, we propose a sphere boundary sample-selecting scheme that selects the training samples at the boundary of a class (in the feature space) to train the PTC model. In this way, a well-enhanced generalization capability can be achieved. To validate the effectiveness of our PTC model, we construct two CDAR data sets (SDAI Action I and SDAI Action II) that include indoor and outdoor environments; all actions and samples in these data sets were carefully collected from public action data sets. To the best of our knowledge, these are the first data sets specifically designed for the CDAR task. Extensive experiments were conducted on these two data sets. The results show that PTC outperforms state-of-the-art video action recognition methods in terms of both accuracy and training efficiency. It is noteworthy that when only two labeled training samples per category are used in the SDAI Action I data set, PTC achieves 21.9% and 6.8% improvement in accuracy over two-stream and temporal segment networks models, respectively. As an added contribution, the SDAI Action I and SDAI Action II data sets will be released to facilitate future research on the CDAR task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不羁的红枫叶完成签到 ,获得积分10
刚刚
1秒前
1秒前
morii发布了新的文献求助10
2秒前
小小富发布了新的文献求助10
2秒前
123456完成签到,获得积分10
3秒前
Angela完成签到,获得积分10
3秒前
3秒前
qqqq完成签到,获得积分10
5秒前
7弥LY发布了新的文献求助10
6秒前
大模型应助莴苣采纳,获得10
6秒前
冷静傲丝完成签到 ,获得积分10
8秒前
赵丹完成签到 ,获得积分10
8秒前
qqqq发布了新的文献求助10
8秒前
9秒前
Yuzuruyan完成签到,获得积分20
10秒前
刘彤完成签到,获得积分10
12秒前
13秒前
打打应助莴苣采纳,获得10
14秒前
lambda发布了新的文献求助200
14秒前
娜娜子完成签到 ,获得积分10
15秒前
结实可仁完成签到,获得积分10
16秒前
hjy完成签到,获得积分10
17秒前
心灵美的幼蓉完成签到,获得积分10
17秒前
一苇以航完成签到 ,获得积分10
19秒前
jiaozhiping完成签到,获得积分10
19秒前
20秒前
yznfly应助小雪糕采纳,获得30
21秒前
Gavin啥也不会完成签到,获得积分10
21秒前
结实的蘑菇完成签到 ,获得积分10
22秒前
笨鸟先飞完成签到 ,获得积分10
24秒前
大模型应助zxzb采纳,获得10
26秒前
tian完成签到,获得积分0
26秒前
NexusExplorer应助Java采纳,获得10
26秒前
铱铱的胡萝卜完成签到,获得积分10
28秒前
勤劳冰烟完成签到,获得积分10
28秒前
xiawanren00完成签到,获得积分10
30秒前
张希伦完成签到 ,获得积分10
30秒前
大个应助莴苣采纳,获得10
30秒前
qqq发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965897
求助须知:如何正确求助?哪些是违规求助? 3511264
关于积分的说明 11157003
捐赠科研通 3245841
什么是DOI,文献DOI怎么找? 1793159
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278