计算机科学
计算机图形学
计算机图形学(图像)
集合(抽象数据类型)
数据集
算法
计算科学
人工智能
程序设计语言
作者
Marie-Lena Eckert,Kiwon Um,Nils Thuerey
标识
DOI:10.1145/3355089.3356545
摘要
In this paper, we present ScalarFlow , a first large-scale data set of reconstructions of real-world smoke plumes. In addition, we propose a framework for accurate physics-based reconstructions from a small number of video streams. Central components of our framework are a novel estimation of unseen inflow regions and an efficient optimization scheme constrained by a simulation to capture real-world fluids. Our data set includes a large number of complex natural buoyancy-driven flows. The flows transition to turbulence and contain observable scalar transport processes. As such, the ScalarFlow data set is tailored towards computer graphics, vision, and learning applications. The published data set contains volumetric reconstructions of velocity and density as well as the corresponding input image sequences with calibration data, code, and instructions how to reproduce the commodity hardware capture setup. We further demonstrate one of the many potential applications: a first perceptual evaluation study, which reveals that the complexity of the reconstructed flows would require large simulation resolutions for regular solvers in order to recreate at least parts of the natural complexity contained in the captured data.
科研通智能强力驱动
Strongly Powered by AbleSci AI