${\mathrm{CsV}}_{3}{\mathrm{Sb}}_{5}$ is a newly discovered ${Z}_{2}$ topological kagome metal showing the coexistence of a charge-density-wave (CDW)-like order at ${T}^{*}=94\text{ }\text{ }\mathrm{K}$ and superconductivity (SC) at ${T}_{c}=2.5\text{ }\text{ }\mathrm{K}$ at ambient pressure. Here, we study the interplay between CDW and SC in ${\mathrm{CsV}}_{3}{\mathrm{Sb}}_{5}$ via measurements of resistivity, dc and ac magnetic susceptibility under various pressures up to 6.6 GPa. We find that the CDW transition decreases with pressure and experience a subtle modification at ${P}_{c1}\ensuremath{\approx}0.6--0.9\text{ }\text{ }\mathrm{GPa}$ before it vanishes completely at ${P}_{c2}\ensuremath{\approx}2\text{ }\text{ }\mathrm{GPa}$. Correspondingly, ${T}_{c}(P)$ displays an unusual $M$-shaped double dome with two maxima around ${P}_{c1}$ and ${P}_{c2}$, respectively, leading to a tripled enhancement of ${T}_{c}$ to about 8 K at 2 GPa. The obtained temperature-pressure phase diagram resembles those of unconventional superconductors, illustrating an intimated competition between CDW-like order and SC. The competition is found to be particularly strong for the intermediate pressure range ${P}_{c1}\ensuremath{\le}P\ensuremath{\le}{P}_{c2}$ as evidenced by the broad superconducting transition and reduced superconducting volume fraction. The modification of CDW order around ${P}_{c1}$ has been discussed based on the band structure calculations. This work not only demonstrates the potential to raise ${T}_{c}$ of the V-based kagome superconductors, but also offers more insights into the rich physics related to the electron correlations in this novel family of topological kagome metals.