A comparison of denoising methods in dynamic MRS using pseudo-synthetic data

降噪 计算机科学 阈值 算法 合成数据 尺度不变特征变换 花键(机械) 奇异值分解 模式识别(心理学) 人工智能 数学 特征提取 结构工程 工程类 图像(数学)
作者
Ben Rowland,Lasya P Sreepada,Lin Ap
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:3
标识
DOI:10.1101/2021.02.23.21252282
摘要

Purpose MR spectroscopy of dynamic systems is limited by low signal to noise. Denoising along a series of acquired spectra exploits their temporal correlation to improve the quality of individual spectra, and reduce errors in fitting metabolite peaks. In this study we compare the performance of several denoising methods. Methods Six different denoising methods were considered: SIFT (Spectral Improvement by Fourier Thresholding), HSVD (Hankel Singular Value Decomposition), spline, wavelet, sliding window and sliding Gaussian. Pseudo-synthetic data was constructed to mimic 31 Phosphorus spectra from exercising muscle. For each method the optimal tuning parameters were determined for SNRs of 2, 5, 10 and 20 using a Monte Carlo approach. Denoised data from each method was then fitted using the AMARES algorithm and the results compared to the pseudo-synthetic ground truth. Results All six methods produced improvements in both fitting accuracy and agreement with the ground truth, compared to unprocessed noisy data. The least effective methods, SIFT and HSVD, achieved around 10-20% reduction in RMS error, while the most effective, Spline, reduced RMS error by 70%. The improvement from denoising was typically greater for lower SNR data. Conclusions Indirect time domain denoising of dynamic MR spectroscopy data can substantially improve subsequent metabolite fitting. Spline-based denoising was found to be the most flexible and effective technique.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
慕青应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得30
1秒前
wy.he应助科研通管家采纳,获得30
1秒前
1秒前
Owen应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Wind应助科研通管家采纳,获得10
2秒前
小马甲应助哈哈哈采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
AAA工位主理人完成签到 ,获得积分10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
LXY应助科研通管家采纳,获得10
2秒前
wy.he应助科研通管家采纳,获得30
2秒前
李健应助科研通管家采纳,获得10
3秒前
ilihe应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
袁123完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
Hello应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603