A comparison of denoising methods in dynamic MRS using pseudo-synthetic data

降噪 计算机科学 阈值 算法 合成数据 尺度不变特征变换 花键(机械) 奇异值分解 模式识别(心理学) 人工智能 数学 特征提取 结构工程 图像(数学) 工程类
作者
Ben Rowland,Lasya P Sreepada,Lin Ap
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:3
标识
DOI:10.1101/2021.02.23.21252282
摘要

Purpose MR spectroscopy of dynamic systems is limited by low signal to noise. Denoising along a series of acquired spectra exploits their temporal correlation to improve the quality of individual spectra, and reduce errors in fitting metabolite peaks. In this study we compare the performance of several denoising methods. Methods Six different denoising methods were considered: SIFT (Spectral Improvement by Fourier Thresholding), HSVD (Hankel Singular Value Decomposition), spline, wavelet, sliding window and sliding Gaussian. Pseudo-synthetic data was constructed to mimic 31 Phosphorus spectra from exercising muscle. For each method the optimal tuning parameters were determined for SNRs of 2, 5, 10 and 20 using a Monte Carlo approach. Denoised data from each method was then fitted using the AMARES algorithm and the results compared to the pseudo-synthetic ground truth. Results All six methods produced improvements in both fitting accuracy and agreement with the ground truth, compared to unprocessed noisy data. The least effective methods, SIFT and HSVD, achieved around 10-20% reduction in RMS error, while the most effective, Spline, reduced RMS error by 70%. The improvement from denoising was typically greater for lower SNR data. Conclusions Indirect time domain denoising of dynamic MR spectroscopy data can substantially improve subsequent metabolite fitting. Spline-based denoising was found to be the most flexible and effective technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助科研通管家采纳,获得10
刚刚
8R60d8应助科研通管家采纳,获得10
刚刚
8R60d8应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
ZJHYNL应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得30
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
李爱国应助xiaoshi采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
ZJHYNL应助科研通管家采纳,获得10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
Pheonix1998发布了新的文献求助10
4秒前
ZzRG发布了新的文献求助10
4秒前
邢文瑞发布了新的文献求助10
5秒前
yydragen应助Kurt采纳,获得30
5秒前
6秒前
6秒前
9秒前
大虫发布了新的文献求助10
10秒前
王紫完成签到,获得积分20
11秒前
kaia发布了新的文献求助10
11秒前
14秒前
14秒前
Orange应助司念者你采纳,获得10
14秒前
15秒前
15秒前
15秒前
WWW完成签到 ,获得积分10
15秒前
16秒前
xinghe123完成签到,获得积分10
17秒前
SYLH应助Kurt采纳,获得30
18秒前
搜第一发布了新的文献求助10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962882
求助须知:如何正确求助?哪些是违规求助? 3508809
关于积分的说明 11143356
捐赠科研通 3241711
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873058
科研通“疑难数据库(出版商)”最低求助积分说明 803579