Deep Convolutional Mixture Density Network for Inverse Design of Layered Photonic Structures

反向 光子学 退化(生物学) 简并能级 材料科学 反问题 纳米光子学 光电子学 算法 卷积神经网络 网络规划与设计 计算机科学 人工智能 物理 数学 纳米技术 电信 量子力学 数学分析 生物 生物信息学 几何学
作者
Rohit Unni,Kan Yao,Yuebing Zheng
出处
期刊:ACS Photonics [American Chemical Society]
卷期号:7 (10): 2703-2712 被引量:76
标识
DOI:10.1021/acsphotonics.0c00630
摘要

Machine learning (ML) techniques, such as neural networks, have emerged as powerful tools for the inverse design of nanophotonic structures. However, this innovative approach suffers some limitations. A primary one is the nonuniqueness problem, which can prevent ML algorithms from properly converging because vastly different designs produce nearly identical spectra. Here, we introduce a mixture density network (MDN) approach, which models the design parameters as multimodal probability distributions instead of discrete values, allowing the algorithms to converge in cases of nonuniqueness without sacrificing degenerate solutions. We apply our MDN technique to inversely design two types of multilayer photonic structures consisting of thin films of oxides, which present a significant challenge for conventional ML algorithms due to a high degree of nonuniqueness in their optical properties. In the 10-layer case, the MDN can handle transmission spectra with high complexity and under varying illumination conditions. The 4-layer case tends to show a stronger multimodal character, with secondary modes indicating alternative solutions for a target spectrum. The shape of the distributions gives valuable information for postprocessing and about the uncertainty in the predictions, which is not available with deterministic networks. Our approach provides an effective solution to the inverse design of photonic structures and yields more optimal searches for the structures with high degeneracy and spectral complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助will采纳,获得10
刚刚
1秒前
MS903发布了新的文献求助10
1秒前
科研通AI2S应助冷酷的树叶采纳,获得30
1秒前
万能图书馆应助潮哈哈耶采纳,获得10
1秒前
2秒前
3秒前
4秒前
saisai发布了新的文献求助20
6秒前
7秒前
蔡从安发布了新的文献求助10
7秒前
7秒前
脑洞疼应助koi采纳,获得10
8秒前
8秒前
11秒前
12秒前
14秒前
WD发布了新的文献求助10
15秒前
在水一方应助小小超采纳,获得30
15秒前
阿混发布了新的文献求助10
17秒前
欣喜芙完成签到,获得积分10
19秒前
19秒前
小二郎应助liuminghui采纳,获得10
20秒前
科研通AI2S应助蔡从安采纳,获得10
20秒前
精明灵薇发布了新的文献求助10
20秒前
yuankeyi完成签到,获得积分10
20秒前
20秒前
紫菜完成签到,获得积分10
21秒前
22秒前
老实的抽屉应助佳佳采纳,获得50
22秒前
xzh应助飞快的稚晴采纳,获得20
23秒前
小药丸完成签到,获得积分10
23秒前
24秒前
科研通AI2S应助Psychexin采纳,获得30
25秒前
25秒前
25秒前
orixero应助阿混采纳,获得20
26秒前
27秒前
八百标兵完成签到,获得积分10
28秒前
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141362
捐赠科研通 3241248
什么是DOI,文献DOI怎么找? 1791412
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803417