期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers] 日期:2021-11-01卷期号:18 (11): 1991-1995被引量:14
标识
DOI:10.1109/lgrs.2020.3010837
摘要
Convolutional neural networks (CNNs) are widely used in the field of remote sensing images. However, the applications of CNNs and related techniques often ignore the properties of remote sensing data. In our study, we focus on the hyperspectral image (HSI) classification problem, and address the issue of including the very rich spectral information present in HSIs in CNN-based models to produce highly accurate classification results. We propose a two-step classification technique, ClusterCNN. The first step divides HSI pixels into different clusters, to form a material map which can be considered as a compressed expression of the original spectral features. The second step trains a CNN that can extract spatial features from the material map, and then exploits these spatial features to classify HSI pixels. The proposed approach follows a strict hierarchy to exploit both the spectral and spatial features in HSIs. Experimental results show the effectiveness of ClusterCNN as compared to the much more complicated state-of-the-art approaches.