Virtual screening of epalrestat mimicking selective ALR2 inhibitors from natural product database: auto pharmacophore, ADMET prediction and molecular dynamics approach

醛糖还原酶 虚拟筛选 药效团 醛糖还原酶抑制剂 醛还原酶 化学 天然产物 立体化学 生物化学
作者
Shalki Choudhary,Om Silakari
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:40 (13): 6052-6070 被引量:1
标识
DOI:10.1080/07391102.2021.1875878
摘要

Epalrestat is the only effective aldose reductase (ALR2) inhibitor available in the market for the treatment of diabetic neuropathy. Clinical effectiveness of epalrestat in diabetic neuropathy encouraged us to develop some more ALR2 inhibitors with a better therapeutic profile. Herein, we utilized the pharmacophoric features of epalrestat to search some novel ALR2 inhibitors from an InterBioScreen database of natural compounds. ADME and PAINS filters were applied to provide drug-likeness and to remove toxicophores from the screened hits. The pharmacophoric features of 4-hydroxy-2-nonenal (HNE), a well-known substrate of ALR1, were also explored to identify selective ALR2 inhibitors. The structure-based analysis was then adopted to find out the molecules showing interactions with ALR2 which are crucial for their therapeutic activity. These interaction patterns and binding modes were compared with that of epalrestat. Molecular dynamics (MD) analysis was also carried out to get more insight into the interactions of screened hits in the catalytic domain of ALR2. Additionally, the top hits were docked and simulated with aldehyde reductase (ALR1) to determine their selectivity for ALR2 over ALR1. Overall, five hits including STOCKIN-44771, STOCKIN-46041, STOCKIN-59369, STOCKIN-69620 and STOCKIN-88220 were found to possess a good therapeutic profile in terms of key interactions, binding energies and drug-likeness. Two hits, STOCKIN-46041 and STOCKIN-59369, were identified as the most selective ALR2 inhibitors when assessed their selectivity profile.Communicated by Ramaswamy H. Sarma.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助mm采纳,获得10
刚刚
future发布了新的文献求助10
1秒前
所所应助李多意采纳,获得10
1秒前
群山发布了新的文献求助10
1秒前
1秒前
旺阿旺完成签到,获得积分10
1秒前
李健应助猪猪猪采纳,获得10
2秒前
无心的紫菜完成签到,获得积分10
2秒前
CCC发布了新的文献求助10
2秒前
飞翔的月亮完成签到,获得积分10
2秒前
111关闭了111文献求助
3秒前
3秒前
3秒前
11完成签到,获得积分10
4秒前
青哲志宇完成签到,获得积分10
4秒前
堇妗发布了新的文献求助10
4秒前
Aletta完成签到,获得积分10
4秒前
4秒前
雨旸时若发布了新的文献求助10
4秒前
5秒前
友好聋五完成签到,获得积分10
6秒前
NOCOZ完成签到,获得积分20
6秒前
hunhun发布了新的文献求助10
6秒前
落后以旋发布了新的文献求助10
6秒前
Niki发布了新的文献求助50
6秒前
lxy发布了新的文献求助10
7秒前
zfd完成签到,获得积分10
7秒前
HOAN应助xxx采纳,获得100
7秒前
图图羊发布了新的文献求助10
7秒前
8秒前
天天快乐应助ltq采纳,获得10
8秒前
8秒前
梅花完成签到,获得积分10
8秒前
研友_LOqqmZ发布了新的文献求助10
8秒前
大力南风发布了新的文献求助10
9秒前
9秒前
江湖笑完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718526
求助须知:如何正确求助?哪些是违规求助? 5253251
关于积分的说明 15286270
捐赠科研通 4868688
什么是DOI,文献DOI怎么找? 2614382
邀请新用户注册赠送积分活动 1564207
关于科研通互助平台的介绍 1521755