Virtual screening of epalrestat mimicking selective ALR2 inhibitors from natural product database: auto pharmacophore, ADMET prediction and molecular dynamics approach

醛糖还原酶 虚拟筛选 药效团 醛糖还原酶抑制剂 醛还原酶 化学 天然产物 立体化学 生物化学
作者
Shalki Choudhary,Om Silakari
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:40 (13): 6052-6070 被引量:1
标识
DOI:10.1080/07391102.2021.1875878
摘要

Epalrestat is the only effective aldose reductase (ALR2) inhibitor available in the market for the treatment of diabetic neuropathy. Clinical effectiveness of epalrestat in diabetic neuropathy encouraged us to develop some more ALR2 inhibitors with a better therapeutic profile. Herein, we utilized the pharmacophoric features of epalrestat to search some novel ALR2 inhibitors from an InterBioScreen database of natural compounds. ADME and PAINS filters were applied to provide drug-likeness and to remove toxicophores from the screened hits. The pharmacophoric features of 4-hydroxy-2-nonenal (HNE), a well-known substrate of ALR1, were also explored to identify selective ALR2 inhibitors. The structure-based analysis was then adopted to find out the molecules showing interactions with ALR2 which are crucial for their therapeutic activity. These interaction patterns and binding modes were compared with that of epalrestat. Molecular dynamics (MD) analysis was also carried out to get more insight into the interactions of screened hits in the catalytic domain of ALR2. Additionally, the top hits were docked and simulated with aldehyde reductase (ALR1) to determine their selectivity for ALR2 over ALR1. Overall, five hits including STOCKIN-44771, STOCKIN-46041, STOCKIN-59369, STOCKIN-69620 and STOCKIN-88220 were found to possess a good therapeutic profile in terms of key interactions, binding energies and drug-likeness. Two hits, STOCKIN-46041 and STOCKIN-59369, were identified as the most selective ALR2 inhibitors when assessed their selectivity profile.Communicated by Ramaswamy H. Sarma.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小泉完成签到,获得积分10
刚刚
小文不想看文献完成签到,获得积分10
刚刚
123完成签到,获得积分10
1秒前
酷波er应助terry采纳,获得10
1秒前
1秒前
1秒前
1秒前
Wu发布了新的文献求助10
3秒前
nanonamo发布了新的文献求助10
3秒前
肚子饿了发布了新的文献求助10
3秒前
4秒前
112我的完成签到,获得积分10
4秒前
4秒前
Yuna完成签到,获得积分10
4秒前
mjje完成签到,获得积分10
4秒前
5秒前
腾腾完成签到,获得积分10
5秒前
meng发布了新的文献求助10
5秒前
科研通AI6.1应助jjjj721采纳,获得10
6秒前
kcp发布了新的文献求助10
6秒前
6秒前
7秒前
chu发布了新的文献求助10
7秒前
万能图书馆应助Yxian采纳,获得10
7秒前
7秒前
sinlar发布了新的文献求助10
7秒前
着急的莫言完成签到,获得积分10
7秒前
付滋滋完成签到 ,获得积分10
7秒前
7秒前
9秒前
勤奋以山发布了新的文献求助30
9秒前
fan完成签到,获得积分10
9秒前
seven_yao完成签到,获得积分10
9秒前
Rixxed发布了新的文献求助10
10秒前
脑洞疼应助山茶采纳,获得10
10秒前
枯藤应助科研通管家采纳,获得10
10秒前
toutou应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
10秒前
枯藤应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207