亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MarkVCID cerebral small vessel consortium: II. Neuroimaging protocols

神经影像学 医学 磁共振成像 痴呆 临床试验 疾病 神经科学 认知 生物标志物 重症监护医学 物理医学与康复 病理 放射科 心理学 精神科 生物化学 化学
作者
Hanzhang Lu,Amir H. Kashani,Konstantinos Arfanakis,Arvind Caprihan,Charles DeCarli,Brian T. Gold,Yang Li,Pauline Maillard,Claudia L. Satizábal,Lara Stables,Danny J.J. Wang,Roderick A. Corriveau,Herpreet Singh,Eric E. Smith,Bruce Fischl,André van der Kouwe,Kristin Schwab,Karl G. Helmer,Steven M. Greenberg
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:17 (4): 716-725 被引量:55
标识
DOI:10.1002/alz.12216
摘要

Abstract The MarkVCID consortium was formed under cooperative agreements with the National Institute of Neurologic Diseases and Stroke (NINDS) and National Institute on Aging (NIA) in 2016 with the goals of developing and validating biomarkers for the cerebral small vessel diseases associated with the vascular contributions to cognitive impairment and dementia (VCID). Rigorously validated biomarkers have consistently been identified as crucial for multicenter studies to identify effective strategies to prevent and treat VCID, specifically to detect increased VCID risk, diagnose the presence of small vessel disease and its subtypes, assess prognosis for disease progression or response to treatment, demonstrate target engagement or mechanism of action for candidate interventions, and monitor disease progression during treatment. The seven project sites and central coordinating center comprising MarkVCID, working with NINDS and NIA, identified a panel of 11 candidate fluid‐ and neuroimaging‐based biomarker kits and established harmonized multicenter study protocols (see companion paper “MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols” for full details). Here we describe the MarkVCID neuroimaging protocols with specific focus on validating their application to future multicenter trials. MarkVCID procedures for participant enrollment; clinical and cognitive evaluation; and collection, handling, and instrumental validation of fluid samples are described in detail in a companion paper. Magnetic resonance imaging (MRI) has long served as the neuroimaging modality of choice for cerebral small vessel disease and VCID because of its sensitivity to a wide range of brain properties, including small structural lesions, connectivity, and cerebrovascular physiology. Despite MRI's widespread use in the VCID field, there have been relatively scant data validating the repeatability and reproducibility of MRI‐based biomarkers across raters, scanner types, and time intervals (collectively defined as instrumental validity). The MRI protocols described here address the core MRI sequences for assessing cerebral small vessel disease in future research studies, specific sequence parameters for use across various research scanner types, and rigorous procedures for determining instrumental validity. Another candidate neuroimaging modality considered by MarkVCID is optical coherence tomography angiography (OCTA), a non‐invasive technique for directly visualizing retinal capillaries as a marker of the cerebral capillaries. OCTA has theoretical promise as a unique opportunity to visualize small vessels derived from the cerebral circulation, but at a considerably earlier stage of development than MRI. The additional OCTA protocols described here address procedures for determining OCTA instrumental validity, evaluating sources of variability such as pupil dilation, and handling data to maintain participant privacy. MRI protocol and instrumental validation The core sequences selected for the MarkVCID MRI protocol are three‐dimensional T1‐weighted multi‐echo magnetization‐prepared rapid‐acquisition‐of‐gradient‐echo (ME‐MPRAGE), three‐dimensional T2‐weighted fast spin echo fluid‐attenuated‐inversion‐recovery (FLAIR), two‐dimensional diffusion‐weighted spin‐echo echo‐planar imaging (DWI), three‐dimensional T2*‐weighted multi‐echo gradient echo (3D‐GRE), three‐dimensional T 2 ‐weighted fast spin‐echo imaging (T2w), and two‐dimensional T2*‐weighted gradient echo echo‐planar blood‐oxygenation‐level‐dependent imaging with brief periods of CO 2 inhalation (BOLD‐CVR). Harmonized parameters for each of these core sequences were developed for four 3 Tesla MRI scanner models in widespread use at academic medical centers. MarkVCID project sites are trained and certified for their instantiation of the consortium MRI protocols. Sites are required to perform image quality checks every 2 months using the Alzheimer's Disease Neuroimaging Initiative phantom. Instrumental validation for MarkVCID MRI‐based biomarkers is operationally defined as inter‐rater reliability, test‐retest repeatability, and inter‐scanner reproducibility. Assessments of these instrumental properties are performed on individuals representing a range of cerebral small vessel disease from mild to severe. Inter‐rater reliability is determined by distribution of an independent dataset of MRI scans to each analysis site. Test‐retest repeatability is determined by repeat MRI scans performed on individual participants on a single MRI scanner after a short (1‐ to 14‐day) interval. Inter‐scanner reproducibility is determined by repeat MRI scans performed on individuals performed across four MRI scanner models. OCTA protocol and instrumental validation The MarkVCID OCTA protocol uses a commercially available, Food and Drug Administration‐approved OCTA apparatus. Imaging is performed on one dilated and one undilated eye to assess the need for dilation. Scans are performed in quadruplicate. MarkVCID project sites participating in OCTA validation are trained and certified by this biomarker's lead investigator. Inter‐rater reliability for OCTA is assessed by distribution of OCTA datasets to each analysis site. Test‐retest repeatability is assessed by repeat OCTA imaging on individuals on the same day as their baseline OCTA and a different‐day repeat session after a short (1‐ to 14‐day) interval. Methods were developed to allow the OCTA data to be de‐identified by the sites before transmission to the central data management system. The MarkVCID neuroimaging protocols, like the other MarkVCID procedures, are designed to allow translation to multicenter trials and as a template for outside groups to generate directly comparable neuroimaging data. The MarkVCID neuroimaging protocols are available to the biomedical community and intended to be shared. In addition to the instrumental validation procedures described here, each of the neuroimaging MarkVCID kits will undergo biological validation to determine its ability to measure important aspects of VCID such as cognitive function. The analytic methods for the neuroimaging‐based kits and the results of these validation studies will be published separately. The results will ultimately determine the neuroimaging kits’ potential usefulness for multicenter interventional trials in small vessel disease–related VCID.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强的广山完成签到,获得积分0
10秒前
如意竺完成签到,获得积分10
12秒前
asdfqwer完成签到 ,获得积分0
26秒前
32秒前
33完成签到,获得积分10
34秒前
40秒前
非洲大象完成签到,获得积分10
44秒前
45秒前
Hello应助开拖拉机的芍药采纳,获得10
56秒前
keepmoving_12完成签到 ,获得积分10
1分钟前
Bigweenine完成签到,获得积分10
1分钟前
danli完成签到 ,获得积分10
1分钟前
席江海完成签到,获得积分10
2分钟前
小马甲应助哈哈带采纳,获得30
2分钟前
2分钟前
乐乐应助壮观晓兰采纳,获得10
2分钟前
3分钟前
可爱慕卉发布了新的文献求助10
3分钟前
3分钟前
3分钟前
哈哈带发布了新的文献求助30
3分钟前
orixero应助可爱慕卉采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
5分钟前
CipherSage应助勤劳的西西采纳,获得10
5分钟前
6分钟前
whykm91完成签到 ,获得积分10
6分钟前
凹凸先森完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
隐形曼青应助科研通管家采纳,获得10
7分钟前
李健的小迷弟应助长颈鹿采纳,获得10
8分钟前
8分钟前
长颈鹿发布了新的文献求助10
8分钟前
长颈鹿完成签到,获得积分10
8分钟前
9分钟前
9分钟前
lf发布了新的文献求助20
10分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244737
求助须知:如何正确求助?哪些是违规求助? 2888410
关于积分的说明 8252853
捐赠科研通 2556864
什么是DOI,文献DOI怎么找? 1385423
科研通“疑难数据库(出版商)”最低求助积分说明 650157
邀请新用户注册赠送积分活动 626269