已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra

主成分分析 组分(热力学) 计算机科学 谱线 减法 模式识别(心理学) 校长(计算机安全) 人工智能 数据挖掘 数学 物理 算术 天文 热力学 操作系统
作者
J. Renwick Beattie,Francis W. L. Esmonde-White
出处
期刊:Applied Spectroscopy [SAGE Publishing]
卷期号:75 (4): 361-375 被引量:160
标识
DOI:10.1177/0003702820987847
摘要

Spectroscopy rapidly captures a large amount of data that is not directly interpretable. Principal component analysis is widely used to simplify complex spectral datasets into comprehensible information by identifying recurring patterns in the data with minimal loss of information. The linear algebra underpinning principal component analysis is not well understood by many applied analytical scientists and spectroscopists who use principal component analysis. The meaning of features identified through principal component analysis is often unclear. This manuscript traces the journey of the spectra themselves through the operations behind principal component analysis, with each step illustrated by simulated spectra. Principal component analysis relies solely on the information within the spectra, consequently the mathematical model is dependent on the nature of the data itself. The direct links between model and spectra allow concrete spectroscopic explanation of principal component analysis , such as the scores representing “concentration” or “weights". The principal components (loadings) are by definition hidden, repeated and uncorrelated spectral shapes that linearly combine to generate the observed spectra. They can be visualized as subtraction spectra between extreme differences within the dataset. Each PC is shown to be a successive refinement of the estimated spectra, improving the fit between PC reconstructed data and the original data. Understanding the data-led development of a principal component analysis model shows how to interpret application specific chemical meaning of the principal component analysis loadings and how to analyze scores. A critical benefit of principal component analysis is its simplicity and the succinctness of its description of a dataset, making it powerful and flexible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
miaomiao完成签到 ,获得积分10
4秒前
努力发自然完成签到 ,获得积分10
7秒前
啦啦啦啦发布了新的文献求助10
8秒前
9秒前
啊哈哈哈完成签到 ,获得积分10
9秒前
9秒前
研友_VZG7GZ应助Runjin_Hu采纳,获得10
11秒前
Sayaka发布了新的文献求助10
16秒前
20秒前
肖易应助pphu采纳,获得10
20秒前
20秒前
23秒前
外向怜晴完成签到,获得积分20
23秒前
25秒前
oleskarabach完成签到,获得积分20
26秒前
Hubert发布了新的文献求助10
26秒前
李爱国应助eeeee采纳,获得10
28秒前
LukeLion发布了新的文献求助10
30秒前
外向怜晴发布了新的文献求助10
31秒前
William_l_c完成签到,获得积分10
33秒前
33秒前
34秒前
肖易应助Hanzoe采纳,获得10
34秒前
LukeLion完成签到,获得积分10
35秒前
Hubert完成签到,获得积分10
37秒前
科研通AI6应助薄荷味汽水采纳,获得10
37秒前
Runjin_Hu完成签到,获得积分10
37秒前
科目三应助JJY丶L采纳,获得30
37秒前
Spice完成签到 ,获得积分10
38秒前
39秒前
水菜泽子完成签到,获得积分10
39秒前
eeeee发布了新的文献求助10
40秒前
脑洞疼应助水菜泽子采纳,获得10
44秒前
49秒前
50秒前
赘婿应助独特的咩咩采纳,获得10
52秒前
52秒前
JJY丶L发布了新的文献求助30
53秒前
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610454
求助须知:如何正确求助?哪些是违规求助? 4016392
关于积分的说明 12435104
捐赠科研通 3697960
什么是DOI,文献DOI怎么找? 2039151
邀请新用户注册赠送积分活动 1072032
科研通“疑难数据库(出版商)”最低求助积分说明 955685