Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra

主成分分析 组分(热力学) 计算机科学 谱线 减法 模式识别(心理学) 校长(计算机安全) 人工智能 数据挖掘 数学 物理 算术 天文 热力学 操作系统
作者
J. Renwick Beattie,Francis W. L. Esmonde-White
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:75 (4): 361-375 被引量:160
标识
DOI:10.1177/0003702820987847
摘要

Spectroscopy rapidly captures a large amount of data that is not directly interpretable. Principal component analysis is widely used to simplify complex spectral datasets into comprehensible information by identifying recurring patterns in the data with minimal loss of information. The linear algebra underpinning principal component analysis is not well understood by many applied analytical scientists and spectroscopists who use principal component analysis. The meaning of features identified through principal component analysis is often unclear. This manuscript traces the journey of the spectra themselves through the operations behind principal component analysis, with each step illustrated by simulated spectra. Principal component analysis relies solely on the information within the spectra, consequently the mathematical model is dependent on the nature of the data itself. The direct links between model and spectra allow concrete spectroscopic explanation of principal component analysis , such as the scores representing “concentration” or “weights". The principal components (loadings) are by definition hidden, repeated and uncorrelated spectral shapes that linearly combine to generate the observed spectra. They can be visualized as subtraction spectra between extreme differences within the dataset. Each PC is shown to be a successive refinement of the estimated spectra, improving the fit between PC reconstructed data and the original data. Understanding the data-led development of a principal component analysis model shows how to interpret application specific chemical meaning of the principal component analysis loadings and how to analyze scores. A critical benefit of principal component analysis is its simplicity and the succinctness of its description of a dataset, making it powerful and flexible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
WZ0904发布了新的文献求助10
5秒前
狂野静曼完成签到 ,获得积分10
6秒前
武映易完成签到 ,获得积分10
8秒前
zzz发布了新的文献求助10
9秒前
10秒前
大蒜味酸奶钊完成签到 ,获得积分10
10秒前
鱼宇纸完成签到 ,获得积分10
10秒前
LEE完成签到,获得积分20
10秒前
10秒前
Ava应助无限的绿真采纳,获得10
12秒前
小马甲应助xiongdi521采纳,获得10
12秒前
科研通AI5应助陶醉觅夏采纳,获得200
15秒前
憨鬼憨切发布了新的文献求助10
15秒前
15秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
17秒前
18秒前
19秒前
hh应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
Eva完成签到,获得积分10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
思源应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
清爽老九应助科研通管家采纳,获得20
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
greenPASS666发布了新的文献求助10
20秒前
涂欣桐应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
secbox完成签到,获得积分10
21秒前
刘哈哈发布了新的文献求助30
21秒前
xyzdmmm完成签到,获得积分10
22秒前
22秒前
欢呼冰岚发布了新的文献求助30
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849