Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra

主成分分析 组分(热力学) 计算机科学 谱线 减法 模式识别(心理学) 校长(计算机安全) 人工智能 数据挖掘 数学 物理 算术 天文 热力学 操作系统
作者
J. Renwick Beattie,Francis W. L. Esmonde-White
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:75 (4): 361-375 被引量:160
标识
DOI:10.1177/0003702820987847
摘要

Spectroscopy rapidly captures a large amount of data that is not directly interpretable. Principal component analysis is widely used to simplify complex spectral datasets into comprehensible information by identifying recurring patterns in the data with minimal loss of information. The linear algebra underpinning principal component analysis is not well understood by many applied analytical scientists and spectroscopists who use principal component analysis. The meaning of features identified through principal component analysis is often unclear. This manuscript traces the journey of the spectra themselves through the operations behind principal component analysis, with each step illustrated by simulated spectra. Principal component analysis relies solely on the information within the spectra, consequently the mathematical model is dependent on the nature of the data itself. The direct links between model and spectra allow concrete spectroscopic explanation of principal component analysis , such as the scores representing “concentration” or “weights". The principal components (loadings) are by definition hidden, repeated and uncorrelated spectral shapes that linearly combine to generate the observed spectra. They can be visualized as subtraction spectra between extreme differences within the dataset. Each PC is shown to be a successive refinement of the estimated spectra, improving the fit between PC reconstructed data and the original data. Understanding the data-led development of a principal component analysis model shows how to interpret application specific chemical meaning of the principal component analysis loadings and how to analyze scores. A critical benefit of principal component analysis is its simplicity and the succinctness of its description of a dataset, making it powerful and flexible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助zzaxx123采纳,获得10
1秒前
弄香发布了新的文献求助10
3秒前
欣慰的白羊完成签到,获得积分10
4秒前
fanhongpeng完成签到 ,获得积分10
4秒前
4秒前
5秒前
ermiao发布了新的文献求助10
5秒前
小李子完成签到,获得积分10
7秒前
JamesPei应助曙丽盼采纳,获得10
8秒前
无极微光应助隐形的若灵采纳,获得20
8秒前
打打应助种花家的狗狗采纳,获得10
8秒前
善学以致用应助TingtingGZ采纳,获得10
8秒前
Stroeve完成签到,获得积分10
9秒前
lzylzy完成签到,获得积分10
9秒前
10秒前
10秒前
zh完成签到,获得积分10
12秒前
lzylzy发布了新的文献求助10
13秒前
14秒前
李顺利给李顺利的求助进行了留言
15秒前
15秒前
15秒前
16秒前
16秒前
17秒前
17秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
yanghj完成签到,获得积分20
20秒前
20秒前
21秒前
莎akkk发布了新的文献求助10
22秒前
曙丽盼发布了新的文献求助10
22秒前
Hermon发布了新的文献求助10
22秒前
星辰大海应助七栀采纳,获得10
22秒前
TingtingGZ发布了新的文献求助10
23秒前
LD20000620完成签到,获得积分10
23秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526942
求助须知:如何正确求助?哪些是违规求助? 4616873
关于积分的说明 14556205
捐赠科研通 4555440
什么是DOI,文献DOI怎么找? 2496353
邀请新用户注册赠送积分活动 1476654
关于科研通互助平台的介绍 1448212