Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra

主成分分析 组分(热力学) 计算机科学 谱线 减法 模式识别(心理学) 校长(计算机安全) 人工智能 数据挖掘 数学 物理 算术 天文 热力学 操作系统
作者
J. Renwick Beattie,Francis W. L. Esmonde-White
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:75 (4): 361-375 被引量:160
标识
DOI:10.1177/0003702820987847
摘要

Spectroscopy rapidly captures a large amount of data that is not directly interpretable. Principal component analysis is widely used to simplify complex spectral datasets into comprehensible information by identifying recurring patterns in the data with minimal loss of information. The linear algebra underpinning principal component analysis is not well understood by many applied analytical scientists and spectroscopists who use principal component analysis. The meaning of features identified through principal component analysis is often unclear. This manuscript traces the journey of the spectra themselves through the operations behind principal component analysis, with each step illustrated by simulated spectra. Principal component analysis relies solely on the information within the spectra, consequently the mathematical model is dependent on the nature of the data itself. The direct links between model and spectra allow concrete spectroscopic explanation of principal component analysis , such as the scores representing “concentration” or “weights". The principal components (loadings) are by definition hidden, repeated and uncorrelated spectral shapes that linearly combine to generate the observed spectra. They can be visualized as subtraction spectra between extreme differences within the dataset. Each PC is shown to be a successive refinement of the estimated spectra, improving the fit between PC reconstructed data and the original data. Understanding the data-led development of a principal component analysis model shows how to interpret application specific chemical meaning of the principal component analysis loadings and how to analyze scores. A critical benefit of principal component analysis is its simplicity and the succinctness of its description of a dataset, making it powerful and flexible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力的夏蓉完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
科研小土豆完成签到,获得积分10
3秒前
aaa发布了新的文献求助20
3秒前
二巨头发布了新的文献求助10
3秒前
lsm完成签到,获得积分10
3秒前
mos2003完成签到,获得积分10
4秒前
4秒前
4秒前
子清发布了新的文献求助10
6秒前
美满的冬卉完成签到,获得积分10
6秒前
6秒前
万能图书馆应助酷奔采纳,获得10
8秒前
Owen应助开心的西瓜采纳,获得10
8秒前
不看了发布了新的文献求助10
9秒前
9秒前
9秒前
zz发布了新的文献求助30
9秒前
9秒前
cpy1004完成签到,获得积分10
10秒前
10秒前
学分完成签到 ,获得积分10
10秒前
xiaozeng完成签到,获得积分10
11秒前
yummy弯发布了新的文献求助20
11秒前
12秒前
12秒前
12秒前
12秒前
Sigma发布了新的文献求助10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
欣喜的初柔完成签到 ,获得积分10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419212
求助须知:如何正确求助?哪些是违规求助? 4534628
关于积分的说明 14145820
捐赠科研通 4451115
什么是DOI,文献DOI怎么找? 2441629
邀请新用户注册赠送积分活动 1433211
关于科研通互助平台的介绍 1410533