Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra

主成分分析 组分(热力学) 计算机科学 谱线 减法 模式识别(心理学) 校长(计算机安全) 人工智能 数据挖掘 数学 物理 算术 天文 热力学 操作系统
作者
J. Renwick Beattie,Francis W. L. Esmonde-White
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:75 (4): 361-375 被引量:160
标识
DOI:10.1177/0003702820987847
摘要

Spectroscopy rapidly captures a large amount of data that is not directly interpretable. Principal component analysis is widely used to simplify complex spectral datasets into comprehensible information by identifying recurring patterns in the data with minimal loss of information. The linear algebra underpinning principal component analysis is not well understood by many applied analytical scientists and spectroscopists who use principal component analysis. The meaning of features identified through principal component analysis is often unclear. This manuscript traces the journey of the spectra themselves through the operations behind principal component analysis, with each step illustrated by simulated spectra. Principal component analysis relies solely on the information within the spectra, consequently the mathematical model is dependent on the nature of the data itself. The direct links between model and spectra allow concrete spectroscopic explanation of principal component analysis , such as the scores representing “concentration” or “weights". The principal components (loadings) are by definition hidden, repeated and uncorrelated spectral shapes that linearly combine to generate the observed spectra. They can be visualized as subtraction spectra between extreme differences within the dataset. Each PC is shown to be a successive refinement of the estimated spectra, improving the fit between PC reconstructed data and the original data. Understanding the data-led development of a principal component analysis model shows how to interpret application specific chemical meaning of the principal component analysis loadings and how to analyze scores. A critical benefit of principal component analysis is its simplicity and the succinctness of its description of a dataset, making it powerful and flexible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
jerseyxin发布了新的文献求助10
8秒前
英吉利25发布了新的文献求助10
9秒前
hy完成签到 ,获得积分10
11秒前
fomo完成签到,获得积分10
11秒前
陈槊诸完成签到 ,获得积分10
15秒前
lee完成签到 ,获得积分0
16秒前
11完成签到 ,获得积分10
16秒前
jerseyxin完成签到,获得积分10
16秒前
太叔丹翠完成签到 ,获得积分10
17秒前
shouz完成签到,获得积分10
30秒前
hadfunsix完成签到 ,获得积分10
32秒前
34秒前
36秒前
YJ完成签到 ,获得积分10
37秒前
hwa完成签到,获得积分10
38秒前
marc107发布了新的文献求助10
39秒前
争当科研巨匠完成签到,获得积分10
39秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
简单应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
萧萧应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
简单应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
共享精神应助科研通管家采纳,获得10
43秒前
萧萧应助科研通管家采纳,获得10
43秒前
简单应助科研通管家采纳,获得10
43秒前
李y梅子完成签到 ,获得积分10
43秒前
开放飞阳完成签到,获得积分10
43秒前
darcy完成签到,获得积分10
43秒前
Astra完成签到,获得积分10
46秒前
步步高完成签到,获得积分10
47秒前
奥丁不言语完成签到 ,获得积分10
49秒前
CLTTTt完成签到,获得积分10
50秒前
Loey完成签到,获得积分10
51秒前
西宁完成签到,获得积分10
56秒前
HopeLee完成签到,获得积分10
56秒前
yq完成签到 ,获得积分20
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449763
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481697
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438559