Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra

主成分分析 组分(热力学) 计算机科学 谱线 减法 模式识别(心理学) 校长(计算机安全) 人工智能 数据挖掘 数学 物理 算术 天文 热力学 操作系统
作者
J. Renwick Beattie,Francis W. L. Esmonde-White
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:75 (4): 361-375 被引量:160
标识
DOI:10.1177/0003702820987847
摘要

Spectroscopy rapidly captures a large amount of data that is not directly interpretable. Principal component analysis is widely used to simplify complex spectral datasets into comprehensible information by identifying recurring patterns in the data with minimal loss of information. The linear algebra underpinning principal component analysis is not well understood by many applied analytical scientists and spectroscopists who use principal component analysis. The meaning of features identified through principal component analysis is often unclear. This manuscript traces the journey of the spectra themselves through the operations behind principal component analysis, with each step illustrated by simulated spectra. Principal component analysis relies solely on the information within the spectra, consequently the mathematical model is dependent on the nature of the data itself. The direct links between model and spectra allow concrete spectroscopic explanation of principal component analysis , such as the scores representing “concentration” or “weights". The principal components (loadings) are by definition hidden, repeated and uncorrelated spectral shapes that linearly combine to generate the observed spectra. They can be visualized as subtraction spectra between extreme differences within the dataset. Each PC is shown to be a successive refinement of the estimated spectra, improving the fit between PC reconstructed data and the original data. Understanding the data-led development of a principal component analysis model shows how to interpret application specific chemical meaning of the principal component analysis loadings and how to analyze scores. A critical benefit of principal component analysis is its simplicity and the succinctness of its description of a dataset, making it powerful and flexible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juanjuan完成签到,获得积分10
1秒前
ding应助Moonpie采纳,获得10
1秒前
1秒前
万能图书馆应助Regina采纳,获得10
1秒前
2秒前
乐乐应助笑嘻嘻采纳,获得10
2秒前
叶子完成签到,获得积分10
2秒前
ohio关注了科研通微信公众号
2秒前
4秒前
大模型应助shenerqing采纳,获得10
4秒前
夏傥完成签到,获得积分10
5秒前
小迷糊发布了新的文献求助10
5秒前
5秒前
5秒前
odetta发布了新的文献求助10
6秒前
6秒前
Hello应助Keyl采纳,获得10
6秒前
安逸发布了新的文献求助10
6秒前
星河发布了新的文献求助10
7秒前
夏傥发布了新的文献求助10
7秒前
CodeCraft应助webel采纳,获得10
8秒前
子车茗应助科研通管家采纳,获得20
9秒前
Lee发布了新的文献求助10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
菲菲应助科研通管家采纳,获得10
9秒前
烂漫的筮完成签到,获得积分10
9秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
longer发布了新的文献求助10
11秒前
11秒前
斯文败类应助树懒采纳,获得10
11秒前
11秒前
我是老大应助阳光的梦寒采纳,获得50
11秒前
上官蔚蓝发布了新的文献求助10
11秒前
三世完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505457
求助须知:如何正确求助?哪些是违规求助? 4601071
关于积分的说明 14475473
捐赠科研通 4535189
什么是DOI,文献DOI怎么找? 2485194
邀请新用户注册赠送积分活动 1468222
关于科研通互助平台的介绍 1440685