Machine Learning Models for the Prediction of Postpartum Depression: Application and Comparison Based on a Cohort Study

特征选择 随机森林 机器学习 支持向量机 人工智能 产后抑郁症 排名(信息检索) 计算机科学 预测建模 医学 怀孕 遗传学 生物
作者
Weina Zhang,Han Liu,Vincent Silenzio,Peiyuan Qiu,Wenjie Gong
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:8 (4): e15516-e15516 被引量:58
标识
DOI:10.2196/15516
摘要

Postpartum depression (PPD) is a serious public health problem. Building a predictive model for PPD using data during pregnancy can facilitate earlier identification and intervention.The aims of this study are to compare the effects of four different machine learning models using data during pregnancy to predict PPD and explore which factors in the model are the most important for PPD prediction.Information on the pregnancy period from a cohort of 508 women, including demographics, social environmental factors, and mental health, was used as predictors in the models. The Edinburgh Postnatal Depression Scale score within 42 days after delivery was used as the outcome indicator. Using two feature selection methods (expert consultation and random forest-based filter feature selection [FFS-RF]) and two algorithms (support vector machine [SVM] and random forest [RF]), we developed four different machine learning PPD prediction models and compared their prediction effects.There was no significant difference in the effectiveness of the two feature selection methods in terms of model prediction performance, but 10 fewer factors were selected with the FFS-RF than with the expert consultation method. The model based on SVM and FFS-RF had the best prediction effects (sensitivity=0.69, area under the curve=0.78). In the feature importance ranking output by the RF algorithm, psychological elasticity, depression during the third trimester, and income level were the most important predictors.In contrast to the expert consultation method, FFS-RF was important in dimension reduction. When the sample size is small, the SVM algorithm is suitable for predicting PPD. In the prevention of PPD, more attention should be paid to the psychological resilience of mothers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
秋半梦完成签到,获得积分10
15秒前
李爱国应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
打地鼠工人完成签到,获得积分10
19秒前
彩色半烟完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
25秒前
Ning完成签到,获得积分10
28秒前
图图完成签到,获得积分10
28秒前
勤奋的灯完成签到 ,获得积分10
28秒前
ludong_0完成签到,获得积分10
28秒前
Asumita完成签到,获得积分10
29秒前
双青豆完成签到 ,获得积分10
29秒前
31秒前
fxy完成签到 ,获得积分10
32秒前
合适的幻然完成签到,获得积分10
32秒前
沐雨汐完成签到,获得积分10
34秒前
36秒前
37秒前
jiayoujijin完成签到 ,获得积分10
37秒前
淡然思卉完成签到,获得积分10
38秒前
争当科研巨匠完成签到,获得积分10
38秒前
英姑应助认真的刺猬采纳,获得10
45秒前
好大一只小坏蛋完成签到,获得积分20
45秒前
站走跑完成签到 ,获得积分10
48秒前
步步高完成签到,获得积分10
50秒前
无私的雪瑶完成签到 ,获得积分10
50秒前
小杨完成签到,获得积分20
51秒前
小花完成签到 ,获得积分10
56秒前
宁夕完成签到 ,获得积分10
1分钟前
西宁完成签到,获得积分10
1分钟前
拼搏的羊青完成签到 ,获得积分10
1分钟前
科目三应助asd113采纳,获得10
1分钟前
deng203完成签到 ,获得积分20
1分钟前
1分钟前
时米米米完成签到,获得积分10
1分钟前
浅浅完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
帅气的藏鸟完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022