Machine Learning Models for the Prediction of Postpartum Depression: Application and Comparison Based on a Cohort Study

特征选择 随机森林 机器学习 支持向量机 人工智能 产后抑郁症 排名(信息检索) 计算机科学 预测建模 医学 怀孕 遗传学 生物
作者
Weina Zhang,Han Liu,Vincent Silenzio,Peiyuan Qiu,Wenjie Gong
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:8 (4): e15516-e15516 被引量:58
标识
DOI:10.2196/15516
摘要

Postpartum depression (PPD) is a serious public health problem. Building a predictive model for PPD using data during pregnancy can facilitate earlier identification and intervention.The aims of this study are to compare the effects of four different machine learning models using data during pregnancy to predict PPD and explore which factors in the model are the most important for PPD prediction.Information on the pregnancy period from a cohort of 508 women, including demographics, social environmental factors, and mental health, was used as predictors in the models. The Edinburgh Postnatal Depression Scale score within 42 days after delivery was used as the outcome indicator. Using two feature selection methods (expert consultation and random forest-based filter feature selection [FFS-RF]) and two algorithms (support vector machine [SVM] and random forest [RF]), we developed four different machine learning PPD prediction models and compared their prediction effects.There was no significant difference in the effectiveness of the two feature selection methods in terms of model prediction performance, but 10 fewer factors were selected with the FFS-RF than with the expert consultation method. The model based on SVM and FFS-RF had the best prediction effects (sensitivity=0.69, area under the curve=0.78). In the feature importance ranking output by the RF algorithm, psychological elasticity, depression during the third trimester, and income level were the most important predictors.In contrast to the expert consultation method, FFS-RF was important in dimension reduction. When the sample size is small, the SVM algorithm is suitable for predicting PPD. In the prevention of PPD, more attention should be paid to the psychological resilience of mothers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然的依丝完成签到,获得积分20
刚刚
step_stone完成签到,获得积分10
1秒前
愉快彩虹发布了新的文献求助10
1秒前
cdu完成签到,获得积分10
2秒前
星辰轨迹完成签到,获得积分10
2秒前
MARS发布了新的文献求助10
2秒前
Jenny应助哈尼妞妞122采纳,获得10
2秒前
岁月轮回发布了新的文献求助10
3秒前
MADKAI发布了新的文献求助10
3秒前
高文强完成签到,获得积分10
3秒前
3秒前
习习应助坚定的诗双采纳,获得10
3秒前
3秒前
er完成签到,获得积分20
4秒前
科研通AI2S应助夯大力采纳,获得10
4秒前
4秒前
4秒前
Hover发布了新的文献求助10
4秒前
852应助无情的白桃采纳,获得10
5秒前
飘逸问薇完成签到 ,获得积分10
6秒前
SYLH应助机智的白猫采纳,获得10
7秒前
大模型应助笑点低蜜蜂采纳,获得10
7秒前
7秒前
CodeCraft应助RRRIGO采纳,获得10
7秒前
凯凯完成签到 ,获得积分10
7秒前
萌萌发布了新的文献求助10
7秒前
yy关闭了yy文献求助
7秒前
kingmin完成签到,获得积分10
7秒前
8秒前
尼克拉倒完成签到,获得积分10
8秒前
milo6666发布了新的文献求助10
9秒前
等待的乐儿完成签到,获得积分20
9秒前
9秒前
10秒前
11秒前
烟花应助醉人的仔采纳,获得10
11秒前
Relax发布了新的文献求助10
11秒前
元元完成签到,获得积分10
11秒前
liourg应助义气的妙松采纳,获得50
11秒前
星辰大海应助冷艳乐松采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759