Machine Learning Models for the Prediction of Postpartum Depression: Application and Comparison Based on a Cohort Study

特征选择 随机森林 机器学习 支持向量机 人工智能 产后抑郁症 排名(信息检索) 计算机科学 预测建模 医学 怀孕 遗传学 生物
作者
Weina Zhang,Han Liu,Vincent Silenzio,Peiyuan Qiu,Wenjie Gong
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:8 (4): e15516-e15516 被引量:58
标识
DOI:10.2196/15516
摘要

Postpartum depression (PPD) is a serious public health problem. Building a predictive model for PPD using data during pregnancy can facilitate earlier identification and intervention.The aims of this study are to compare the effects of four different machine learning models using data during pregnancy to predict PPD and explore which factors in the model are the most important for PPD prediction.Information on the pregnancy period from a cohort of 508 women, including demographics, social environmental factors, and mental health, was used as predictors in the models. The Edinburgh Postnatal Depression Scale score within 42 days after delivery was used as the outcome indicator. Using two feature selection methods (expert consultation and random forest-based filter feature selection [FFS-RF]) and two algorithms (support vector machine [SVM] and random forest [RF]), we developed four different machine learning PPD prediction models and compared their prediction effects.There was no significant difference in the effectiveness of the two feature selection methods in terms of model prediction performance, but 10 fewer factors were selected with the FFS-RF than with the expert consultation method. The model based on SVM and FFS-RF had the best prediction effects (sensitivity=0.69, area under the curve=0.78). In the feature importance ranking output by the RF algorithm, psychological elasticity, depression during the third trimester, and income level were the most important predictors.In contrast to the expert consultation method, FFS-RF was important in dimension reduction. When the sample size is small, the SVM algorithm is suitable for predicting PPD. In the prevention of PPD, more attention should be paid to the psychological resilience of mothers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ACMI发布了新的文献求助10
1秒前
华仔完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
萊以托尔福完成签到,获得积分10
2秒前
丘比特应助Jack123采纳,获得10
3秒前
LW完成签到,获得积分10
3秒前
南依发布了新的文献求助10
3秒前
心灵美的清涟完成签到,获得积分10
4秒前
chany发布了新的文献求助10
4秒前
4秒前
小鱼完成签到,获得积分10
5秒前
6秒前
苗苗完成签到,获得积分10
6秒前
Leo发布了新的文献求助10
7秒前
LW发布了新的文献求助10
7秒前
8秒前
8秒前
在水一方应助加一点荒谬采纳,获得10
9秒前
9秒前
9秒前
逃不了发布了新的文献求助10
9秒前
ding应助liffy采纳,获得10
10秒前
10秒前
11秒前
云山完成签到,获得积分10
11秒前
du199944发布了新的文献求助10
12秒前
Pessimist完成签到 ,获得积分10
12秒前
chany完成签到,获得积分10
12秒前
乐观依云完成签到,获得积分10
12秒前
是阿龙呀完成签到,获得积分10
13秒前
水下月发布了新的文献求助10
13秒前
Mic应助CT采纳,获得10
14秒前
15秒前
Hello应助Leo采纳,获得10
15秒前
泽锦臻发布了新的文献求助10
15秒前
雪景写诗发布了新的文献求助10
16秒前
17秒前
采蘑菇的小姑凉完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478622
求助须知:如何正确求助?哪些是违规求助? 4580239
关于积分的说明 14372881
捐赠科研通 4508614
什么是DOI,文献DOI怎么找? 2470795
邀请新用户注册赠送积分活动 1457548
关于科研通互助平台的介绍 1431443