Machine Learning Models for the Prediction of Postpartum Depression: Application and Comparison Based on a Cohort Study

特征选择 随机森林 机器学习 支持向量机 人工智能 产后抑郁症 排名(信息检索) 计算机科学 预测建模 医学 怀孕 遗传学 生物
作者
Weina Zhang,Han Liu,Vincent Silenzio,Peiyuan Qiu,Wenjie Gong
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:8 (4): e15516-e15516 被引量:58
标识
DOI:10.2196/15516
摘要

Postpartum depression (PPD) is a serious public health problem. Building a predictive model for PPD using data during pregnancy can facilitate earlier identification and intervention.The aims of this study are to compare the effects of four different machine learning models using data during pregnancy to predict PPD and explore which factors in the model are the most important for PPD prediction.Information on the pregnancy period from a cohort of 508 women, including demographics, social environmental factors, and mental health, was used as predictors in the models. The Edinburgh Postnatal Depression Scale score within 42 days after delivery was used as the outcome indicator. Using two feature selection methods (expert consultation and random forest-based filter feature selection [FFS-RF]) and two algorithms (support vector machine [SVM] and random forest [RF]), we developed four different machine learning PPD prediction models and compared their prediction effects.There was no significant difference in the effectiveness of the two feature selection methods in terms of model prediction performance, but 10 fewer factors were selected with the FFS-RF than with the expert consultation method. The model based on SVM and FFS-RF had the best prediction effects (sensitivity=0.69, area under the curve=0.78). In the feature importance ranking output by the RF algorithm, psychological elasticity, depression during the third trimester, and income level were the most important predictors.In contrast to the expert consultation method, FFS-RF was important in dimension reduction. When the sample size is small, the SVM algorithm is suitable for predicting PPD. In the prevention of PPD, more attention should be paid to the psychological resilience of mothers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
小砍完成签到,获得积分10
2秒前
如初完成签到,获得积分10
4秒前
ranj发布了新的文献求助10
4秒前
Rye完成签到,获得积分10
4秒前
十三完成签到,获得积分10
6秒前
乐乐应助入门的橙橙采纳,获得10
6秒前
6秒前
7秒前
wan发布了新的文献求助10
7秒前
Ji完成签到,获得积分10
8秒前
9秒前
科研通AI2S应助的的的的的采纳,获得10
11秒前
情怀应助的的的的的采纳,获得10
11秒前
小二郎应助絮语采纳,获得10
11秒前
Rye发布了新的文献求助10
11秒前
MRJJJJ发布了新的文献求助10
12秒前
yangyl完成签到,获得积分10
13秒前
动听雪旋完成签到 ,获得积分10
13秒前
英俊的铭应助Sinner采纳,获得10
13秒前
luoyutian完成签到 ,获得积分10
14秒前
15秒前
Lucas应助wan采纳,获得10
15秒前
TINATINA完成签到,获得积分10
15秒前
英姑应助周凡淇采纳,获得10
16秒前
Singularity应助周凡淇采纳,获得10
16秒前
Singularity应助周凡淇采纳,获得10
16秒前
zohen应助周凡淇采纳,获得10
16秒前
Singularity应助周凡淇采纳,获得10
16秒前
科研通AI2S应助周凡淇采纳,获得10
16秒前
科研通AI2S应助周凡淇采纳,获得10
16秒前
科研通AI2S应助周凡淇采纳,获得10
17秒前
wanci应助周凡淇采纳,获得10
17秒前
小砍关注了科研通微信公众号
19秒前
21秒前
21秒前
从容芮给LX的求助进行了留言
23秒前
23秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125673
求助须知:如何正确求助?哪些是违规求助? 2775964
关于积分的说明 7728568
捐赠科研通 2431440
什么是DOI,文献DOI怎么找? 1292065
科研通“疑难数据库(出版商)”最低求助积分说明 622314
版权声明 600376