Lung cancer subtype differentiation from positron emission tomography images

随机森林 人工智能 特征选择 交叉验证 正电子发射断层摄影术 模式识别(心理学) 计算机科学 肺癌 决策树 支持向量机 朴素贝叶斯分类器 逻辑回归 机器学习 肿瘤科 医学 放射科
作者
Oğuzhan Ayyıldız,Zafer Aydın,Bülent Yılmaz,Seyhan Karaçavuş,Kübra Senkaya,Semra İçer,Arzu Taşdemi̇r,Eser Kaya
出处
期刊:Turkish Journal of Electrical Engineering and Computer Sciences [Scientific and Technological Research Council of Turkey]
卷期号:28 (1): 262-274 被引量:7
标识
DOI:10.3906/elk-1810-154
摘要

Lung cancer is one of the deadly cancer types, and almost 85 % of lung cancers are nonsmall cell lung cancer (NSCLC). In the present study we investigated classification and feature selection methods for the differentiation of two subtypes of NSCLC, namely adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). The major advances in understanding the effects of therapy agents suggest that future targeted therapies will be increasingly subtype specific. We obtained positron emission tomography (PET) images of 93 patients with NSCLC, 39 of which had ADC while the rest had SqCC. Random walk segmentation was applied to delineate three-dimensional tumor volume, and 39 texture features were extracted to grade the tumor subtypes. We examined 11 classifiers with two different feature selection methods and the effect of normalization on accuracy. The classifiers we used were the k-nearest-neighbor, logistic regression, support vector machine, Bayesian network, decision tree, radial basis function network, random forest, AdaBoostM1, and three stacking methods. To evaluate the prediction accuracy we performed a leave-one-out cross-validation experiment on the dataset. We also considered optimizing certain hyperparameters of these models by performing 10-fold cross-validation separately on each training set. We found that the stacking ensemble classifier, which combines a decision tree, AdaBoostM1, and logistic regression methods by a metalearner, was the most accurate method for detecting subtypes of NSCLC, and normalization of feature sets improved the accuracy of the classification method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
马静雨完成签到,获得积分20
1秒前
2秒前
2秒前
快乐小白菜应助shenzhou9采纳,获得10
2秒前
无花果应助aertom采纳,获得10
2秒前
小田发布了新的文献求助10
2秒前
sankumao发布了新的文献求助30
2秒前
奋斗的盼柳完成签到 ,获得积分10
3秒前
4秒前
Jasper应助handsomecat采纳,获得10
4秒前
4秒前
李雪完成签到,获得积分10
5秒前
5秒前
sv发布了新的文献求助10
7秒前
小田完成签到,获得积分10
7秒前
茶茶完成签到,获得积分20
7秒前
苏兴龙完成签到,获得积分10
7秒前
坚强的亦云-333完成签到,获得积分10
7秒前
Ava应助dan1029采纳,获得10
8秒前
8秒前
8秒前
奶糖最可爱完成签到,获得积分10
9秒前
9秒前
mojomars发布了新的文献求助10
10秒前
幽壑之潜蛟应助茶茶采纳,获得10
10秒前
11秒前
11秒前
11秒前
迅速海云完成签到,获得积分10
11秒前
sjxx发布了新的文献求助10
11秒前
11秒前
乐乐应助Rachel采纳,获得10
12秒前
12秒前
12秒前
天天快乐应助孤独的珩采纳,获得10
13秒前
帅气鹭洋发布了新的文献求助20
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794