Lung cancer subtype differentiation from positron emission tomography images

随机森林 人工智能 特征选择 交叉验证 正电子发射断层摄影术 模式识别(心理学) 计算机科学 肺癌 决策树 支持向量机 朴素贝叶斯分类器 逻辑回归 机器学习 肿瘤科 医学 放射科
作者
Oğuzhan Ayyıldız,Zafer Aydın,Bülent Yılmaz,Seyhan Karaçavuş,Kübra Senkaya,Semra İçer,Arzu Taşdemi̇r,Eser Kaya
出处
期刊:Turkish Journal of Electrical Engineering and Computer Sciences [Scientific and Technological Research Council of Turkey]
卷期号:28 (1): 262-274 被引量:7
标识
DOI:10.3906/elk-1810-154
摘要

Lung cancer is one of the deadly cancer types, and almost 85 % of lung cancers are nonsmall cell lung cancer (NSCLC). In the present study we investigated classification and feature selection methods for the differentiation of two subtypes of NSCLC, namely adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). The major advances in understanding the effects of therapy agents suggest that future targeted therapies will be increasingly subtype specific. We obtained positron emission tomography (PET) images of 93 patients with NSCLC, 39 of which had ADC while the rest had SqCC. Random walk segmentation was applied to delineate three-dimensional tumor volume, and 39 texture features were extracted to grade the tumor subtypes. We examined 11 classifiers with two different feature selection methods and the effect of normalization on accuracy. The classifiers we used were the k-nearest-neighbor, logistic regression, support vector machine, Bayesian network, decision tree, radial basis function network, random forest, AdaBoostM1, and three stacking methods. To evaluate the prediction accuracy we performed a leave-one-out cross-validation experiment on the dataset. We also considered optimizing certain hyperparameters of these models by performing 10-fold cross-validation separately on each training set. We found that the stacking ensemble classifier, which combines a decision tree, AdaBoostM1, and logistic regression methods by a metalearner, was the most accurate method for detecting subtypes of NSCLC, and normalization of feature sets improved the accuracy of the classification method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangzhangzhang完成签到 ,获得积分10
2秒前
耍酷的梦桃完成签到,获得积分10
4秒前
niumi190完成签到,获得积分10
4秒前
孤独黑猫完成签到 ,获得积分10
8秒前
俭朴的一曲完成签到,获得积分10
9秒前
13秒前
汉堡包应助柴犬采纳,获得10
15秒前
16秒前
17秒前
dery发布了新的文献求助10
22秒前
Jasper应助体贴的冥王星采纳,获得10
24秒前
Kate应助beikeyy采纳,获得10
26秒前
樟寿完成签到,获得积分10
26秒前
柴犬完成签到,获得积分10
26秒前
28秒前
郝君颖完成签到 ,获得积分10
31秒前
柴犬发布了新的文献求助10
32秒前
空域完成签到,获得积分10
37秒前
温馨完成签到 ,获得积分10
38秒前
小星星完成签到 ,获得积分10
38秒前
闫栋完成签到 ,获得积分10
39秒前
林先生完成签到,获得积分10
40秒前
眠眠清完成签到 ,获得积分10
45秒前
美丽的鞋垫完成签到 ,获得积分10
45秒前
54秒前
LQ完成签到,获得积分10
54秒前
LonelyCMA完成签到 ,获得积分10
55秒前
eyu完成签到,获得积分10
55秒前
可爱的函函应助YL采纳,获得10
58秒前
1分钟前
tuanzi发布了新的文献求助10
1分钟前
苯二氮卓完成签到,获得积分10
1分钟前
洁净之柔完成签到,获得积分20
1分钟前
风信子完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助LickyLu采纳,获得10
1分钟前
顺风顺水顺财神完成签到 ,获得积分10
1分钟前
tuanzi完成签到 ,获得积分10
1分钟前
rayqiang完成签到,获得积分10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139665
求助须知:如何正确求助?哪些是违规求助? 2790602
关于积分的说明 7795670
捐赠科研通 2447017
什么是DOI,文献DOI怎么找? 1301553
科研通“疑难数据库(出版商)”最低求助积分说明 626264
版权声明 601176