Lung cancer subtype differentiation from positron emission tomography images

随机森林 人工智能 特征选择 交叉验证 正电子发射断层摄影术 模式识别(心理学) 计算机科学 肺癌 决策树 支持向量机 朴素贝叶斯分类器 逻辑回归 机器学习 肿瘤科 医学 放射科
作者
Oğuzhan Ayyıldız,Zafer Aydın,Bülent Yılmaz,Seyhan Karaçavuş,Kübra Senkaya,Semra İçer,Arzu Taşdemi̇r,Eser Kaya
出处
期刊:Turkish Journal of Electrical Engineering and Computer Sciences [Scientific and Technological Research Council of Turkey (TUBITAK)]
卷期号:28 (1): 262-274 被引量:7
标识
DOI:10.3906/elk-1810-154
摘要

Lung cancer is one of the deadly cancer types, and almost 85 % of lung cancers are nonsmall cell lung cancer (NSCLC). In the present study we investigated classification and feature selection methods for the differentiation of two subtypes of NSCLC, namely adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). The major advances in understanding the effects of therapy agents suggest that future targeted therapies will be increasingly subtype specific. We obtained positron emission tomography (PET) images of 93 patients with NSCLC, 39 of which had ADC while the rest had SqCC. Random walk segmentation was applied to delineate three-dimensional tumor volume, and 39 texture features were extracted to grade the tumor subtypes. We examined 11 classifiers with two different feature selection methods and the effect of normalization on accuracy. The classifiers we used were the k-nearest-neighbor, logistic regression, support vector machine, Bayesian network, decision tree, radial basis function network, random forest, AdaBoostM1, and three stacking methods. To evaluate the prediction accuracy we performed a leave-one-out cross-validation experiment on the dataset. We also considered optimizing certain hyperparameters of these models by performing 10-fold cross-validation separately on each training set. We found that the stacking ensemble classifier, which combines a decision tree, AdaBoostM1, and logistic regression methods by a metalearner, was the most accurate method for detecting subtypes of NSCLC, and normalization of feature sets improved the accuracy of the classification method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
sleep君完成签到,获得积分10
2秒前
jiayun完成签到,获得积分10
3秒前
牛牛牛发布了新的文献求助10
3秒前
4秒前
核桃发布了新的文献求助10
4秒前
薇子发布了新的文献求助10
5秒前
领导范儿应助小明仔采纳,获得10
5秒前
科研鸟发布了新的文献求助10
6秒前
xsz关注了科研通微信公众号
7秒前
DK完成签到,获得积分10
8秒前
燕子发布了新的文献求助30
11秒前
TTT完成签到,获得积分10
12秒前
FashionBoy应助Dora采纳,获得10
12秒前
12秒前
12秒前
14秒前
英雷完成签到,获得积分10
15秒前
深情安青应助小智采纳,获得10
17秒前
个性的汲发布了新的文献求助10
17秒前
WANG发布了新的文献求助10
18秒前
小马甲应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得30
21秒前
yznfly应助科研通管家采纳,获得30
21秒前
21秒前
知许解夏应助科研通管家采纳,获得10
22秒前
Orange应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
华仔应助科研通管家采纳,获得30
22秒前
1111应助科研通管家采纳,获得10
22秒前
彭于晏应助科研通管家采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
SYLH应助科研通管家采纳,获得10
22秒前
yydragen应助科研通管家采纳,获得30
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
SYLH应助科研通管家采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388