接头(建筑物)
计算机科学
人工智能
期望最大化算法
最大化
图像融合
融合
图像配准
图像(数学)
模式识别(心理学)
最大似然
像素
计算机视觉
混合模型
数学
数学优化
统计
工程类
哲学
建筑工程
语言学
作者
Hao Zhu,Chunxia Tang,Allan De Freitas,Lyudmila Mihaylova
标识
DOI:10.23919/fusion43075.2019.9011410
摘要
In this paper, we propose a Student-$t$ mixture model (SMM) to approximate the joint intensity scatter plot (JISP) of the groupwise images. The problem of joint groupwise image registration and fusion is considered as a maximum likelihood (ML) formulation. The parameters of registration and fusion are estimated simultaneously by an expectation maximization (EM) algorithm. To evaluate the performance of the proposed method, experiments on several types of multimodal images are performed. Comprehensive experiments demonstrate that the proposed approach has better performance than other methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI