Learning to Simulate Human Mobility

鉴别器 计算机科学 发电机(电路理论) 弹道 机动性模型 基线(sea) 人工智能 机器学习 领域知识 数据挖掘 功率(物理) 分布式计算 探测器 海洋学 物理 地质学 电信 量子力学 天文
作者
Jie Feng,Zeyu Yang,Fengli Xu,Haisu Yu,Mudan Wang,Yong Li
标识
DOI:10.1145/3394486.3412862
摘要

Realistic simulation of a massive amount of human mobility data is of great use in epidemic spreading modeling and related health policy-making. Existing solutions for mobility simulation can be classified into two categories: model-based methods and model-free methods, which are both limited in generating high-quality mobility data due to the complicated transitions and complex regularities in human mobility. To solve this problem, we propose a model-free generative adversarial framework, which effectively integrates the domain knowledge of human mobility regularity utilized in the model-based methods. In the proposed framework, we design a novel self-attention based sequential modeling network as the generator to capture the complicated temporal transitions in human mobility. To augment the learning power of the generator with the advantages of model-based methods, we design an attention-based region network to introduce the prior knowledge of urban structure to generate a meaningful trajectory. As for the discriminator, we design a mobility regularity-aware loss to distinguish the generated trajectory. Finally, we utilize the mobility regularities of spatial continuity and temporal periodicity to pre-train the generator and discriminator to further accelerate the learning procedure. Extensive experiments on two real-life mobility datasets demonstrate that our framework outperforms seven state-of-the-art baselines significantly in terms of improving the quality of simulated mobility data by 35%. Furthermore, in the simulated spreading of COVID-19, synthetic data from our framework reduces MAPE from 5% ~ 10% (baseline performance) to 2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
透明的世界应助xinlei2023采纳,获得10
1秒前
2秒前
传奇3应助dhsnh采纳,获得10
2秒前
2秒前
酷炫小馒头完成签到,获得积分10
5秒前
SciGPT应助Elixir采纳,获得10
5秒前
Akim应助称心凡采纳,获得10
5秒前
5秒前
simon完成签到 ,获得积分10
6秒前
7秒前
傲娇的凡旋应助qwd采纳,获得10
8秒前
小锅发布了新的文献求助10
9秒前
赘婿应助LL采纳,获得10
10秒前
11秒前
12秒前
12秒前
12秒前
今日不再蛇皇应助云康肖采纳,获得20
12秒前
13秒前
凩飒应助柳叨叨采纳,获得30
13秒前
13秒前
14秒前
123关注了科研通微信公众号
15秒前
Yet.完成签到,获得积分10
15秒前
bkagyin应助zxm采纳,获得10
15秒前
Elixir发布了新的文献求助10
16秒前
笨笨西装应助怡然菲音采纳,获得10
17秒前
lfchen发布了新的文献求助10
17秒前
郭郭张张发布了新的文献求助10
17秒前
Juliet完成签到,获得积分10
17秒前
穿多点发布了新的文献求助10
18秒前
yangyangyang发布了新的文献求助30
18秒前
dhy关注了科研通微信公众号
18秒前
YAO发布了新的文献求助10
18秒前
19秒前
拉拉完成签到 ,获得积分20
19秒前
薄荷发布了新的文献求助10
19秒前
莫x莫完成签到 ,获得积分10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3587604
求助须知:如何正确求助?哪些是违规求助? 3156195
关于积分的说明 9509860
捐赠科研通 2858994
什么是DOI,文献DOI怎么找? 1571288
邀请新用户注册赠送积分活动 736829
科研通“疑难数据库(出版商)”最低求助积分说明 721959