High-performance infrared thermal radiation suppression metamaterials enabling inhibited infrared emittance and decreased temperature simultaneously

热发射率 红外线的 发射率 材料科学 红外窗口 热辐射 辐射冷却 光学 辐射强度 黑体辐射 热光电伏打 光电子学 远红外 辐射 辐射传输 低发射率 红外线加热器 吸收率 超材料 热红外光谱 物理 天体物理学 反射率 热力学 梁(结构) 共发射极
作者
Qiao Xu,Xianglei Liu,Yimin Xuan,Ying Xu,Dachuan Liu
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:161: 120318-120318 被引量:32
标识
DOI:10.1016/j.ijheatmasstransfer.2020.120318
摘要

Infrared thermal radiation suppression techniques are vital to the survival of various vehicles/targets, and low-emissivity materials are conventionally employed to reduce infrared radiant power of targets. However, infrared radiant power depends not only on infrared emittance but also heavily on the temperature according to Steven-Boltzmann law (P=εσT4). In this work, it is for the first time, a novel type of infrared stealth material based on tailoring radiative properties in an ultra-broadband ranging from 0.4 µm to 14 µm is proposed. A low emittance in atmosphere window (3–5 µm, 8–14 µm) is achieved to suppress infrared radiation, and a high emittance from 5 to 8 µm is obtained to reduce temperature via radiative cooling from metamaterial surface to the atmosphere. Meanwhile, low absorptance in the solar spectra (0.4–2.5 µm) can help to resist the solar heat. As a result, the infrared radiant power in the atmospheric window is prominently reduced benefiting from low emittance and decreased temperature. This work helps guide the design of more effective infrared stealth materials and paves the way for the applications of metamaterials in infrared stealth applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ttttttuu完成签到,获得积分10
刚刚
1秒前
刘涵完成签到 ,获得积分10
1秒前
小马甲应助zhui采纳,获得10
1秒前
10完成签到,获得积分10
1秒前
1秒前
1秒前
Rainielove0215完成签到,获得积分0
2秒前
zz完成签到,获得积分10
3秒前
3秒前
kyle完成签到,获得积分10
5秒前
感性的凉面完成签到,获得积分20
5秒前
5秒前
请叫我风吹麦浪应助末岛采纳,获得10
6秒前
Aprial发布了新的文献求助30
6秒前
dd发布了新的文献求助10
6秒前
传奇3应助科研小菜鸟采纳,获得10
6秒前
在水一方应助惠惠采纳,获得10
7秒前
8秒前
冷艳贵公子王少完成签到 ,获得积分10
8秒前
KatzeBaliey完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
zz发布了新的文献求助10
9秒前
9秒前
Twikky发布了新的文献求助10
10秒前
10秒前
小马甲应助芒果采纳,获得10
11秒前
11秒前
心想事成完成签到,获得积分10
13秒前
隐形曼青应助噔噔噔噔采纳,获得10
13秒前
wei发布了新的文献求助10
13秒前
Nature完成签到,获得积分10
13秒前
樱桃苏打水完成签到,获得积分10
14秒前
zhui发布了新的文献求助10
14秒前
金色热浪发布了新的文献求助10
14秒前
pinging应助讲你ing采纳,获得10
16秒前
小九完成签到 ,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794