光催化
材料科学
异质结
钝化
兴奋剂
分解水
光电子学
水溶液
化学工程
纳米技术
化学
催化作用
物理化学
有机化学
工程类
图层(电子)
作者
Tayyebeh Soltani,Byeong-Kyu Lee
标识
DOI:10.1016/j.scitotenv.2020.138640
摘要
In a conventional photoelectrochemical (PEC) water splitting system using BiVO4 (BVO), most of the charge carriers have very sluggish photocatalysis reaction kinetics because they are easily recombined from the defects developed from the bulk or the surface of the photoanodes before reaching the fluorine-doped tin dioxide (FTO). Herein, we present a facile design and fabrication technique for a Ag-BVO/BiFeO3 (BFO) heterostructure photoanode by Ag doping and surface passivation with BFO on the as-preparedBVO photoanode. Its photocatalytic properties for PEC water splitting and tetracycline (TC) degradation are compared to those of BVO/BFO, BVO, and Ag-BVO photocatalyst nanoparticle (NP) films. The effect of Ag-doping/BFO surface passivation on the morphological, structural, and optical properties and surface electronic structure of the as-obtainedBVO electrodes was investigated. The photocatalytic degradation of TC in aqueous solution by Ag-BVO/BFO was greatly increased (>1.5-fold) compared to that of BVO. The TC was completely photodegraded in 50 min of visible-light irradiation. The as-preparedAg-BVO/BFO heterojunction photoanode not only exhibited 4-fold higher PEC performance (0.72 mA cm−2 vs. RHE) and stability than those of the pure BVO components, but also the onset potential in the Ag-BVO/BFO photoanode was cathodically shifted by 600 mV compared to that of the bare BVO. The Ag-BVO/BFO photoelectrode with the highest donor density and the lowest charge transfer resistance exhibited a 4.46-fold higher carrier density than that of the pure BVO photoelectrode. More specifically, the Mott-Schottky (MS) and electrochemical impedance spectroscopy (EIS) results demonstrated that the Ag-doping not only effectively increased the carrier charge density of BVO, thus increasing the consumption rate of charge carriers, but also increased the charge transfer and transport efficiencies of the BVO photoanodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI