Plasma protein patterns as comprehensive indicators of health

医学 比例(比率) 编码 生物信息学 计算生物学 生物 基因 遗传学 量子力学 物理
作者
Stephen A. Williams,Mika Kivimäki,Claudia Langenberg,Aroon D. Hingorani,Juan P. Casas,Claude Bouchard,Christian Jonasson,Mark A. Sarzynski,Martin J. Shipley,Leigh Alexander,Jessica A. Ash,Tim Bauer,Jessica Chadwick,Gargi Datta,Robert Kirk DeLisle,Yolanda Hagar,Michael Hinterberg,Rachel Ostroff,Sophie Weiss,Peter Ganz,Nicholas J. Wareham
出处
期刊:Nature Medicine [Springer Nature]
卷期号:25 (12): 1851-1857 被引量:334
标识
DOI:10.1038/s41591-019-0665-2
摘要

Proteins are effector molecules that mediate the functions of genes1,2 and modulate comorbidities3–10, behaviors and drug treatments11. They represent an enormous potential resource for personalized, systemic and data-driven diagnosis, prevention, monitoring and treatment. However, the concept of using plasma proteins for individualized health assessment across many health conditions simultaneously has not been tested. Here, we show that plasma protein expression patterns strongly encode for multiple different health states, future disease risks and lifestyle behaviors. We developed and validated protein-phenotype models for 11 different health indicators: liver fat, kidney filtration, percentage body fat, visceral fat mass, lean body mass, cardiopulmonary fitness, physical activity, alcohol consumption, cigarette smoking, diabetes risk and primary cardiovascular event risk. The analyses were prospectively planned, documented and executed at scale on archived samples and clinical data, with a total of ~85 million protein measurements in 16,894 participants. Our proof-of-concept study demonstrates that protein expression patterns reliably encode for many different health issues, and that large-scale protein scanning12–16 coupled with machine learning is viable for the development and future simultaneous delivery of multiple measures of health. We anticipate that, with further validation and the addition of more protein-phenotype models, this approach could enable a single-source, individualized so-called liquid health check. Large-scale aptamer-based scanning of plasma proteins coupled with machine learning demonstrates proof-of-concept and feasibility of an individualized health check using a single blood sample.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YG完成签到,获得积分10
1秒前
1秒前
吗喽小祁完成签到,获得积分10
2秒前
WYP完成签到,获得积分20
2秒前
3秒前
在水一方应助浮流少年采纳,获得10
4秒前
Lucas应助小小薇采纳,获得30
5秒前
爆米花应助于生有你采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
几酌应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
6秒前
从容的完成签到 ,获得积分10
6秒前
思源应助科研通管家采纳,获得10
6秒前
SOBER发布了新的文献求助10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
Barton应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
7秒前
xiaowang完成签到,获得积分10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
XIXI发布了新的文献求助10
8秒前
青柠完成签到,获得积分10
9秒前
lzr完成签到,获得积分10
10秒前
赘婿应助Grace0610采纳,获得10
10秒前
minino完成签到 ,获得积分10
11秒前
12秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816164
关于积分的说明 7911772
捐赠科研通 2475878
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388