Integrating Multi-Omic Data with Deep Subspace Fusion Clustering for Cancer Subtype Prediction

聚类分析 计算机科学 人工智能 计算生物学 子空间拓扑 癌症 层次聚类 模式识别(心理学) 数据挖掘 生物 遗传学
作者
Bo Yang,Yupei Zhang,Shanmin Pang,Xuequn Shang,Xueqing Zhao,Minghui Han
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:11
标识
DOI:10.1109/tcbb.2019.2951413
摘要

One type of cancer usually consists of several subtypes with distinct clinical implications, thus the cancer subtype prediction is an important task in disease diagnosis and therapy. Utilizing one type of data from molecular layers in biological system to predict is difficult to bridge the cancer genome to cancer phenotypes, since the genome is neither simple nor independent but rather complicated and dysregulated from multiple molecular mechanisms. Similarity Network Fusion (SNF) has been recently proposed to integrate diverse omics data for improving the understanding of tumorigenesis. SNF adopts Euclidean distance to measure the similarity between patients, which shows some limitations. In this article, we introduce a novel prediction technique as an extension of SNF, namely Deep Subspace Fusion Clustering (DSFC). DSFC utilizes auto-encoder and data self-expressiveness approaches to guide a deep subspace model, which can achieve effective expression of discriminative similarity between patients. As a result, the dissimilarity between inter-cluster is delivered and enhanced compactness of intra-cluster is achieved at the same time. The validity of DSFC is examined by extensive simulations over six different cancer through three levels omics data. The survival analysis demonstrates that DSFC delivers comparable or even better results than many state-of-the-art integrative methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杜彦君发布了新的文献求助10
1秒前
霜二完成签到 ,获得积分10
1秒前
1秒前
丘比特应助Hoooo...采纳,获得10
1秒前
1秒前
2秒前
2秒前
田様应助吴昊东采纳,获得10
2秒前
xxiao发布了新的文献求助10
4秒前
4秒前
张大帅6666发布了新的文献求助10
6秒前
chloe完成签到,获得积分10
7秒前
9秒前
10秒前
10秒前
10秒前
完美世界应助高高的茹妖采纳,获得10
10秒前
11秒前
12秒前
12秒前
13秒前
Ava应助zzzcxxx采纳,获得10
13秒前
13秒前
14秒前
14秒前
keyant发布了新的文献求助10
14秒前
落后的纸鹤完成签到,获得积分10
14秒前
14秒前
CreithJ发布了新的文献求助10
15秒前
17秒前
非也非也6发布了新的文献求助10
17秒前
sdndkjfvb发布了新的文献求助10
18秒前
YEE发布了新的文献求助10
18秒前
怕孤单的初蝶完成签到,获得积分10
18秒前
Charon应助dyf采纳,获得10
18秒前
无花果应助mochi采纳,获得10
21秒前
newgeno2003完成签到,获得积分10
21秒前
22秒前
Ava应助张张采纳,获得10
23秒前
土豆淀粉完成签到 ,获得积分10
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231365
求助须知:如何正确求助?哪些是违规求助? 2878512
关于积分的说明 8206452
捐赠科研通 2545921
什么是DOI,文献DOI怎么找? 1375527
科研通“疑难数据库(出版商)”最低求助积分说明 647410
邀请新用户注册赠送积分活动 622508