材料科学
光子学
光热治疗
吸收(声学)
制作
纳米技术
光电子学
热光电伏打
超材料
微流控
微加工
辐射能
光学
复合材料
替代医学
辐射
病理
物理
医学
共发射极
作者
Yu Cang,Jaejun Lee,Zuyuan Wang,Jiajun Yan,Krzysztof Matyjaszewski,Michael R. Bockstaller,George Fytas
标识
DOI:10.1002/adma.202004732
摘要
Abstract Photothermal energy conversion is of fundamental importance to applications ranging from drug delivery to microfluidics and from ablation to fabrication. It typically originates from absorptive processes in materials that—when coupled with non‐radiative dissipative processes—allow the conversion of radiative energy into heat. Microstructure design provides versatile strategies for controlling light–matter interactions. In particular, the deliberate engineering of the band structure in photonic materials is known to be an effective approach to amplify absorption in materials. However, photonic amplification is generally tied to high optical contrast materials which limit the applicability of the concept to metamaterials such as microfabricated metal–air hybrids. This contribution describes the first observation of pronounced amplification of absorption in low contrast opals formed by the self‐assembly of polymer‐tethered particles. The dependence of the amplification factor on the length scale and degree of order of materials as well as the angle of incidence reveal that it is related to the slow photon effect. A remarkable amplification factor of 16 is shown to facilitate the rapid “melting” of opal films even in the absence of “visible” absorption. The results point to novel opportunities for tailoring light–matter interactions in hybrid materials that can benefit the manipulation and fabrication of functional materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI