A reference map of potential determinants for the human serum metabolome

代谢组 微生物群 代谢物 代谢组学 人体微生物群 生物 计算生物学 归属 肠道微生物群 生物信息学 遗传学 生理学 生物化学 心理学 社会心理学
作者
Noam Bar,Tal Korem,Omer Weissbrod,David Zeevi,Daphna Rothschild,Sigal Leviatan,Noa Kosower,Maya Lotan‐Pompan,Adina Weinberger,Caroline Le Roy,Cristina Menni,Alessia Visconti,Mario Falchi,Tim D. Spector,Henrik Vestergaard,Manimozhiyan Arumugam,Torben Hansen,Kristine H. Allin,Tue H. Hansen,Mun‐Gwan Hong,Jochen M. Schwenk,Ragna S. Häussler,Matilda Dale,Toni Giorgino,Marianne Rodriquez,Mandy H. Perry,Rachel Nice,Timothy J. McDonald,Andrew T. Hattersley,Angus G. Jones,Ulrike Graefe‐Mody,Patrick Baum,Rolf Grempler,Cecilia Engel Thomas,Federico De Masi,Caroline Brorsson,Gianluca Mazzoni,Rosa Lundbye Allesøe,Simon Rasmussen,Valborg Guðmundsdóttir,Agnes Martine Nielsen,Karina Banasik,Konstantinos D. Tsirigos,Birgitte Nilsson,Helle Pedersen,Søren Brunak,Tugce Karaderi,Agnete Troen Lundgaard,Joachim Johansen,Ramneek Gupta,Peter Wad Sackett,J. Tillner,Thorsten Lehr,Nina Scherer,Christiane Dings,Iryna Sihinevich,Heather Loftus,Louise Cabrelli,Donna McEvoy,Andrea Mari,Roberto Bizzotto,Andrea Tura,Leen M. ‘t Hart,Koen F. Dekkers,Nienke van Leeuwen,Roderick C. Slieker,Femke Rutters,Joline W. J. Beulens,Giel Nijpels,Anitra D.M. Koopman,Sabine van Oort,Lenka Groeneveld,Leif Groop,Petra J. M. Elders,Ana Viñuela,Anna Ramisch,Emmanouil Dermitzakis,Beate Ehrhardt,Christopher Jennison,Philippe Froguel,Mickaël Canouil,Amélie Boneford,Ian McVittie,Dianne Wake,Francesca Frau,Hans‐Henrik Stærfeldt,Kofi P. Adragni,Melissa K. Thomas,Han Wu,Imre Pavo,Birgit Steckel-Hamann,Henrik S. Thomsen,Giuseppe N. Giordano,Hugo Fitipaldi,Martin Ridderstråle,Azra Kurbasic,Naeimeh Atabaki Pasdar,Hugo Pomares‐Millan,Pascal M. Mutie,Robert W. Koivula,Nicky McRobert,Mark I. McCarthy,Agata Wesolowska‐Andersen,Anubha Mahajan,Moustafa Abdalla,Juan Fernandez,Reinhard W. Holl,Alison Heggie,Harshal Deshmukh,Anita M. Hennige,Susanna Bianzano,Barbara Thorand,Sapna Sharma,Harald Grallert,Jonathan Adam,Martina Troll,Andreas Fritsche,Anita Hill,Claire E. Thorne,Michelle Hudson,Teemu Kuulasmaa,Jagadish Vangipurapu,Markku Laakso,Henna Cederberg,Tarja Kokkola,Yunlong Jiao,Stephen Gough,Neil Robertson,Hélène Verkindt,Violeta Raverdi,Robert Caïazzo,François Pattou,Margaret H. White,Louise A. Donnelly,Andrew Brown,Nicholette D. Palmer,David Davtian,Adem Y. Dawed,Ian Forgie,Ewan R. Pearson,Hartmut Ruetten,Petra Musholt,Jimmy D. Bell,E. Louise Thomas,Brandon Whitcher,Mark Haid,Claudia Nicolay,Miranda Mourby,Jane Kaye,Nisha Shah,Harriet Teare,Gary Frost,Bernd Jablonka,Mathias Uhlén,Rebeca Eriksen,Josef Korbinian Vogt,Avirup Dutta,Anna Jönsson,Line Engelbrechtsen,Annemette Forman,Nadja B. Søndertoft,Nathalie de Préville,Tania Baltauss,Mark Walker,Johann Gassenhuber,Maria Klintenberg,Margit Bergstrom,Jorge Ferrer,Jerzy Adamski,Paul W. Franks,Oluf Pedersen,Eran Segal
出处
期刊:Nature [Springer Nature]
卷期号:588 (7836): 135-140 被引量:307
标识
DOI:10.1038/s41586-020-2896-2
摘要

The serum metabolome contains a plethora of biomarkers and causative agents of various diseases, some of which are endogenously produced and some that have been taken up from the environment1. The origins of specific compounds are known, including metabolites that are highly heritable2,3, or those that are influenced by the gut microbiome4, by lifestyle choices such as smoking5, or by diet6. However, the key determinants of most metabolites are still poorly understood. Here we measured the levels of 1,251 metabolites in serum samples from a unique and deeply phenotyped healthy human cohort of 491 individuals. We applied machine-learning algorithms to predict metabolite levels in held-out individuals on the basis of host genetics, gut microbiome, clinical parameters, diet, lifestyle and anthropometric measurements, and obtained statistically significant predictions for more than 76% of the profiled metabolites. Diet and microbiome had the strongest predictive power, and each explained hundreds of metabolites—in some cases, explaining more than 50% of the observed variance. We further validated microbiome-related predictions by showing a high replication rate in two geographically independent cohorts7,8 that were not available to us when we trained the algorithms. We used feature attribution analysis9 to reveal specific dietary and bacterial interactions. We further demonstrate that some of these interactions might be causal, as some metabolites that we predicted to be positively associated with bread were found to increase after a randomized clinical trial of bread intervention. Overall, our results reveal potential determinants of more than 800 metabolites, paving the way towards a mechanistic understanding of alterations in metabolites under different conditions and to designing interventions for manipulating the levels of circulating metabolites. The levels of 1,251 metabolites are measured in 475 phenotyped individuals, and machine-learning algorithms reveal that diet and the microbiome are the determinants with the strongest predictive power for the levels of these metabolites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情的采蓝完成签到,获得积分10
3秒前
汉堡包应助YLA采纳,获得10
4秒前
4秒前
6秒前
bare完成签到,获得积分10
8秒前
8秒前
8秒前
ChexLant驳回了SQXT应助
8秒前
haomiao完成签到 ,获得积分10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
杳鸢应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
栀清发布了新的文献求助10
11秒前
流徵完成签到,获得积分10
11秒前
天天快乐应助Ywffffff采纳,获得10
12秒前
善学以致用应助men采纳,获得30
12秒前
能干的薯片应助popovich采纳,获得20
13秒前
13秒前
南风发布了新的文献求助10
14秒前
14秒前
白华苍松发布了新的文献求助10
15秒前
科研通AI2S应助尊敬的怀莲采纳,获得10
19秒前
琉璃岁月发布了新的文献求助10
20秒前
20秒前
ceeray23应助阔达犀牛采纳,获得10
23秒前
Lucas应助醉熏的井采纳,获得10
25秒前
Ywffffff发布了新的文献求助10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454308
求助须知:如何正确求助?哪些是违规求助? 3049562
关于积分的说明 9017790
捐赠科研通 2738130
什么是DOI,文献DOI怎么找? 1501905
科研通“疑难数据库(出版商)”最低求助积分说明 694307
邀请新用户注册赠送积分活动 692926